|
|
|
Kontakt | Haftungsausschluss |
|
|
|
|
|
Daten/Statistiken | Strom, Stromerzeugung, Stromverbrauch | 0 |
Photovoltaik DE 2018-2024 09.08.24 (2486) |
dpa-Globus 17027: Sonne tanken Die Anzahl der Photovoltaik (PV)-Anlagen in Deutschland (DE) und ihre Nennleistung sind zuletzt deutlich gestiegen (Anzahl in M | Nennleistung in GW, Stand: jeweils 1.1.): 2018 1,7|42,3 2019 1,7|43,9 2020 1,8|47,6 2021 2,0|52,3 2022 2,2|57,5 2023 2,5|67,0 2024 3,3|77,7 Seit 2018 hat sich die Anzahl der PV-Anlagen also fast verdoppelt, ihre Nennleistung ist um 84% gestiegen. Der PV-Anteil am gesamtem Stromverbrauch in DE betrug 2023 rund 12%. Wegen der vergleichsweise geringen Sonneneinstrahlung in DE* liegt der Jahres-Nutzungsgrad meist unter 10%. So erzeugten 2023 die 67 GW Nennleistung nur 53,9 TWh Strom, 9,2% der rechnerischen Höchstmenge von 587 TWh**.
Quelle: Statistisches Bundesamt | Infografik
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 2022|23 15.03.24 (2425) |
dpa-Globus 16731: Deutschlands Strommix 2023 wurden in Deutschland 449,8 TWh Strom erzeugt (-11,8% ggü.Vorjahr) mit einem EE-Anteil von 56,0% (Vorjahr 46,3%). Anteile der konventionellen und erneuerbaren Energieträger 2022|2023 (in %): Kohle 33,2|26,1 Erdgas 11,5|13,6 Kernenergie 6,4|1,5 Sonstige 2,6|2,8 Windkraft 24,0|31,0 Photovoltaik 10,6|11,9 Biogas 5,8|6,2 Wasserkraft 3,2|4,1 Sonstige 2,7|2,8 Quelle: Statistisches Bundesamt | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 2023 01.01.24 (2384) |
Strom-Report: Der Stromix in Deutschland 2023 Die Netto*-Stromerzeugung** im Jahr 2023 in Deutschland betrug 436 TWh*** mit folgender Verteilung auf die Energieträger (Anteile in %): Windkraft 32,2 Photovoltaik 12,4 Biomasse 9,8 Wasserkraft 4,7 Braunkohle 18,0 Steinkohle 8,4 Erdgas 10,6 Kernenergie 1,6 Sonstige 2,3 . Der EE-Anteil (59,6%) übersteigt inzwischen deutlich den Anteil der konventionellen Energien (40,4%).
Quelle: Strom-Report 2023 | Serie
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch DE 2023 22.12.23 (2380) |
dpa-Globus 16554: Stromverbrauch in Deutschland 2023 Die Bruttostromerzeugung in Deutschland 2023* (2022) betrug 508 (569) TWh, darunter 267 (252) TWh Ökostrom (53% (44%)). Damit ist der EE-Anteil zum ersten Mal über die 50%-Marke gestiegen. Die 53% Ökostrom verteilen sich wie folgt auf die EE-Arten (Anteile in %): Onshore-Wind 22 Photovoltaik 12 Biomasse (inkl. Siedlungsabfälle) 10 Offshore-Wind 5 Wasser 4 . 2023: vorläufige Berechnungen Quelle: BDEW | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Heizungsarten DE 2023 17.11.23 (2369) |
dpa-Globus 16488: So heizt Deutschland Laut neuem GEG (ab 1.1.24) sollen Heizungen möglichst zügig von fossilen auf erneuerbare Energien umgestellt werden. Vor diesem Hintergrund listet die Grafik den Anteil der beim Heizen in Wohngebäuden aktuell (2023) genutzten Energieträger (in %): Erdgas 50,1 Erdöl 28,5 Fernwärme 6,0 Wärmepumpen 5,3 Nachtspeicheröfen 1,8 Flüssiggas, Holz, Pellets, Kohle etc 8,3 . Gas und Öl umfassen bereits 78,6%. Auch die weiteren Energiearten enthalten immer noch hohe fossile Anteile, so dass insgesamt der fossile Anteil bei rund 90% liegt. Vor allem die Umrüstung auf Wärmepumpen und einhergehend der massive Ausbau von Ökostrom sowie von Nah- und Fernwärme sollen die Wärmewende beschleunigen. Aktuell werden aber erst 1 Million Gebäude (5,3%) per Wärmepumpe beheizt. Laut GEG dürfen ab 2045 keine Heizungen mehr mit Erdgas oder Heizöl betrieben werden. Bis dahin gelten zwar Übergangsregeln, aber solche Heizungen sollten besser ab sofort nicht mehr eingebaut werden, denn ab 2027 werden sie einbezogen in den EU-Emissionshandel und der CO2-Preis könnte weit vor 2045 auf Hunderte € steigen. Ein Jahresverbrauch von 20 MWh Erdgas* erzeugt rund 4t CO2**, die bei z.B. 250 €/t die Heizkosten um 1000 € erhöhen, also 5 ct/kWh Mehrkosten durch den CO2-Preis: der aktuelle Erdgaspreis von etwa 10 ct/kWh würde sich um 50% auf 15 ct/kWh verteuern. * Wohnungen in energetisch unsanierten Altbauten haben z.B. einen Erdgasverbrauch in der Größenordung von 200 kWh/(m²a), eine 100 m² Wohnung hat also einen Jahresverbrauch von 20.000 kWh = 20 MWh ** Zur Überschlagsrechnung wird hier für Erdgas der Emissionsfaktor 200 gCO2/kWh verwendet. Tabellenwerte: 182|201 in Tab-1|Tab-4 ➔ Quelle: BDEW | Infografik
|
|||||||||||||||||||||||||||||||||||||
Photovoltaik DE 1990-2022 14.07.23 (2345) |
dpa-Globus 16239: Sonnenenergie für Deutschland Ende 2022 waren in Deutschland 2,5M PV-Anlagen mit einer Nenn-Leistung von 67,5 GW installiert. Die Grafik zeigt die Anzahl der jährlich neuinstallierten PV-Anlagen samt ihrer Leistung (in GW) von 1990 bis 2022 mit dem Zwischenhoch 2010: 255.716|7,526, dem Zwischentief 2015: 47.226|1,406 und einem steilem Anstieg zuletzt auf 2022: 386.891|7,445. Quelle: Bundesverband Solarwirtschaft | Infografik
|
|||||||||||||||||||||||||||||||||||||
Industrie-Strompreise EU H2-2022 19.06.23 (2341) |
Statista: So hoch sind die Strompreise für die Industrie Der Industriepreis für Strom (in ct/kWh) variiert in der EU von 44 in Dänemark bis 15 in Frankreich. In der Europakarte sind die Länder gefärbt gemäß der Staffel [20, 30, 40]. Deutschland liegt mit 26 im Mittelfeld. Um die Wettbewerbsfähigkeit energieintensiver Betriebe der Grundstoffindustrie wie Chemie oder Stahl zu stärken, plant Wirtschaftsminister Habeck, den Strompreis zu senken mit staatlichen Subventionen in Milliardenhöhe. In einer Zwischenphase bis 2030 soll ein "Brückenstrompreis" von 6 ct/kWh mit Subventionen von 25 bis 30 G€ realisiert werden. Danach sollen Firmen über einen "Transformationspreis" direkt von sinkenden Kosten bei Wind- und Solarstrom profitieren (↗). Quelle: Eurostat
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 2010 - 2022 21.04.23 (2377) |
dpa-Globus 16068: Stromerzeugung in Deutschland Die Grafik informiert über die Anteile der Energieträger an der Nettostromerzeugung* in Deutschland von 2010 bis 2022 (hier 2011|2022, in %): Atomkraft 24,7|6,7 Erdgas 11,7|9,2 Kohle 42,7|32,9 Erneuerbare 18,9|49,8 . Am 15.4.23 wurden die letzten drei Atomkraftwerke vom Netz genommen (➔). Ersetzt wird der Atomstrom durch mehr Stromimport und Kohlestrom, vor allem aber durch EE-Ausbau: Ziel bis 2030 ist der Anteil 80% von dann geschätzten 690-750 TWh (➔) * Bruttostromerzeugung – (Eigenbedarf der Kraftwerke + Netzverluste) Quelle: Fraunhofer-Institut für Solare Energiesysteme | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch EU 2021-22 14.04.23 (2326) |
Statista: Europa nutzt deutlich weniger Kernenergie In Deutschland wurden am 15. April 2023 die drei letzten Kernreaktoren endgültig abgeschaltet, auch in der EU verzeichnet Kernenergie den größten Rückgang und vielerorts schreitet der Rückbau voran. Vor diesem Hintergrund listet die Grafik die Veränderung des Stromverbrauchs in der EU 2022 ggü. 2021 nach Energiearten (in TWh gerundet | in %): Solar 40|24,0 Wind 34|8,8 Kohle 27|6,4 Gas 5|0,8 Hydro -66|-19,0 Kernenergie -119|-16,0 Andere -6|-1,5 . In Deutschland ist der Wind-| Solarstromverbrauch um 24|9% gestiegen. 2022 wurde insgesamt 85 TWh (-3%) weniger Strom verbraucht als 2021. Quelle: Global Electricity Review 2023 Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Atomkraftwerke Europa 2023 31.01.23 (2315) |
Statista: Hier wird Europas Atomenergie erzeugt Nach 40 Jahren Laufzeit wurde das AKW Tihange-2 am 31.01.23 vom Netz genommen, bis 2025 sollen 5 weitere Kernreaktoren in Belgien folgen. Die Laufzeit der 2 jüngsten Reaktoren wurde auf 2035 verlängert zur Linderung der Energiekrise, die durch Russlands Angriffskrieg auf die Ukraine ausgelöst wurde. In Deutschland werden deshalb die letzten 3 Atomkraftwerke im Streckbetrieb über ihre ursprünglich geplante Abschaltung am 31.12.22 hinaus weiter laufen bis zum 15.04.23. Vor diesem Hintergrund sind in der Europakarte jene 19 Länder farblich markiert, die Atomreaktoren weiter betreiben oder neu planen bzw. bereits bauen, wobei jeweils die Anzahl notiert ist. Insgesamt sind 160 Kernreaktoren im Betrieb, die mit Abstand meisten in Frankreich (56) und in Russland (37). In folgenden Ländern sind neue Reaktoren geplant oder im Bau: 〈RU 5 TR 4 SK 2 UK 2 FI 1 FR 1〉. Quelle: World Nuclear Industry Status Report Statista: Infotext Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 2011-2022 06.01.23 (2309) |
dpa-Globus 15864: Der deutsche Strommix Die Grafik zeigt die Entwicklung der Anteile der Primärenergiearten an der Bruttostromerzeugung von 2011 bis 2022 in Deutschland. Der EE-Anteil hat sich von 2012:23% fast verdoppelt auf den neuen Rekordwert 2022: 45%. Der windige Jahresbeginn 2022 und viel Sonnenschein in den Sommermonaten waren die Hauptgründe für den Anstieg um 4 %P ggü. 2021. Bis 2030 soll der EE-Anteil auf mindestens 80% gesteigert werden, so das Ziel der Ampel-Regierung. Im Zuge des Atomausstiegs fiel der Anteil der Kernenergie von 2011:18% auf 2022:6%. Der Anteil von Stein-|Braunkohle sank zunächst von 2011:19|25% auf den Tiefpunkt 2020:8|16%, stieg danach aber wieder auf zuletzt 2022:12|20%. Der Anteil von Erdgas schwankte zwischen 2015:10% (Tiefpunkt) und 2020:17% (Hochpunkt), zuletzt 2022:14%. Zusammensetzung des 45% EE-Anteils 2022 (in %, Σ=44 rundungsbedingt): Wind-onshore 17 Photovoltaik 11 Biomasse 8 Wind-offshore 4 Wasser 3 Abfälle 1 Quelle: BDEW: Jahresbericht 2022 Pressemitteilung | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Wind-, Solarstrom DE 2022 02.01.23 (2307) |
Statista: So wichtig waren Wind und Sonne 2022 Der Ökostrom-Anteil an der Nettostrommenge in Deutschland ist von 2021|45,7% auf 2022|49,6% gestiegen und lag zuletzt etwas unter dem bisherigen Rekord 2020|50,3%. Ein Großteil des Ökostroms entfiel auf Windkraft und Photovoltaik, deren Ertrag allerdings im Jahreslauf witterungsbedingt stark schwankt, wie die Grafik zeigt. Die Windkraft war besonders ertragreich im Winter (Spitze: Feb 2022|45%) und Frühling, die Photovoltaik von Mai bis August, wo sie konstant über 20% der Nettostrommenge erzeugte. Quelle: Fraunhofer ISE Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Brownout Blackout 02.11.22 (2284) |
Statista: Droht Deutschland der Blackout? Aus physikalisch-technischen Gründen müssen Stromangebot und -nachfrage in jeder Sekunde im Stromnetz übereinstimmen. Kann eine zu hohe Nachfrage nicht mehr bedient werden, müssen zeitweise Stromverbraucher kontrolliert abgeschaltet werden. Solche Phasen werden als "Brownout" bezeichnet. Sie dauern nur Minuten bis wenige Stunden (↗). Weitaus gefährlicher ist eine großflächige unkontrollierte Störung im Netzbetrieb, etwa ausgelöst durch umfangreiche Zerstörung von Infrastruktur z.B. nach Unwettern (↗) oder Sabotage. Da solch ein "Blackout" mehrere Tage dauern kann, wären die Folgen gravierend bis katastrophal (↗ ↗). In der Grafik werden Brownout und Blackout gegenüber gestellt anhand folgender Aspekte: ➊ Definition ➋ Gründe ➌ Dauer ➍ Folgen ➎ Häufigkeit ➏ Wahrscheinlichkeit im kommenden Winter. Die Grafik ergänzt Vorschläge, wie jede(r) zur Vermeidung von Netzüberlastung beitragen kann: Strom sparen; Standby vermeiden; Kühlgeräte richtig einstellen. Besonders wichtig ist, auf Heizlüfter als Ersatzheizung nach Ausfall der normalen Heizung zu verzichten. Quelle: Bundesnetzagentur Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Erneuerbare Energien Anteil DE 2005-2021 23.09.22 (2259) |
dpa-Globus 15655: Erneuerbare Energien Der EE-Anteil am Energieverbrauch (in %) ist von 2005|7,1 auf 2021|19,2 gestiegen. Die Grafik zeigt den EE-Anteil differenziert nach Sektoren: 2005|2021 in % Strom 10,3|41,1 Wärme/Kälte 7,9|16,5 Verkehr 3,6|6,8 insgesamt 7,1|19,2 . Laut neuem EEG (ab 2023) soll der EE-Anteil beim Strom bis 2030 beschleunigt auf 80% ausgebaut werden. Auch die gesamte Strommenge muss drastisch erhöht werden, weil die Enerigewende bei Wärme/Kälte und im Verkehr auf beschleunigter Elektrifizierung (Wärmepumpen, Elektromobilität) basiert, in Kombination mit Energiesparen und Steigerung der Energieeffizienz. Quelle: BMWK | Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch Haushalte DE 2020 16.09.22 (2257) |
dpa-Globus 15636: Stromverbrauch in Deutschlands Haushalten Im Jahr 2020 verbrauchten die Privathaushalte in Deutschland 125,6 TWh Strom, davon entfielen auf die Anwendungsbereiche (in %): ➊ Erhitzen (Kochen, Waschen, Trocknen, Bügeln) 30 ➋ Kühlen (Kühl-/Gefriergeräte) 23 ➌ IuK 17 ➍ Warmwasser (Baden, Duschen, u.ä.) 11 ➎ Beleuchtung 8 ➏ Heizung 6 ➐ mechanische Haushaltsgeräte 4 ➑ Klimakälte 1. Der Heizungsanteil (6%) ist gering, da hier andere Energieträger (Erdgas, Öl, Fernwärme ➔) dominieren. Als Folge der Klimaerwärmung mit häufigeren Hitzewellen (wie z.B. 2018) wird der bisher geringe Anteil der Klimakälte (1%) vermutlich wachsen (⤴) Quelle: BDEW | Infografik
|
|||||||||||||||||||||||||||||||||||||
Heizungsarten DE 2021 16.09.22 (2254) |
dpa-Globus 15635: So werden die Wohnungen warm Anteil (%) der Heizungsarten im Bestand | in Neubauten 2021: ➊ Erdgas 49,5|26,2 ➋ Öl 24,8|0,3 ➌ Fernwärme 14,1|22,7 ➍ Wärmepumpen 2,8|43,6 ➎ Strom 2,6|1,4 ➏ Holz/-pellets, Solarthermie u.a. 6,2|5,8. Im Bestand kommt die Wärmewende nur langsam voran: 74,3% der Wohnungen werden noch mit Erdgas oder Erdöl beheizt. Hinzu kommen - auch bei Neubauten - die immer noch hohen fossilen Anteile bei der Fernwärme (67,7% ➔) und bei Wärmepumpen (44,0% ➔). Quelle: BDEW: Bestand Neubauten | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Wind-/Solarenergie Nettostrom DE 1.- 8.2022 09.09.22 (2243) |
Statista: Sonne Si, Wind No Der Anteil erneuerbarer Energien (EE) am Strommix lag 2021 bei rund 46%, in H1-2022 sind es 51%. Ein Großteil entfällt auf Wind- und Solarenergie, deren Verteilung vom Wetter abhängt, das sich im Jahresverlauf typisch ändert. So war der Photovoltaik-Strom im diesjährigem Sommer mit Rekordanzahl von Sonnenstunden (➔) besonders hoch, der Windstrom dagegen fiel deutlich ab, wie die Zeitreihe von Jan bis Aug zeigt: Anteil von Wind-|Solarergie an der Nettostromerzeugung in DE 1.- 8.2022 in %: Jan 34,6|2,2 Feb 45,3|5,2 Mrz 18,6|13,2 Apr 27,4|14,3 Mai 19,8|19,6 Jun 15,3|22,0 Jul 17,3|20,5 Aug 11,2|19,7 . Quelle: Fraunhofer ISE Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Energiepreise DE 07.2021-07.2022 22.08.22 (2234) |
Statista: Heizöl-Preise um 143 Prozent gestiegen Die Grafik zeigt den Anstieg der Preise für Heizöl, Erdgas, Strom und Frischwasser vom Juli 2021 bis Juli 2022 ggü. dem dem Jahresdurchschnitt 2015 in %: Heizöl 143,3 Erdgas 74,4 Strom 31,2 Frischwasser 12,3 Die Strompreise sind zuletzt zwar etwas gesunken, doch der EEX-Stromhandel markierte vergangene Woche einen neuen Höchstwert von 563 €/MWh (= 56,3 ct/kWh, vor einem Jahr 23 €/MWh). Hauptgründe für den Preissprung sind die extremen Knappheiten in Frankreich, Österreich und Italien, die die bereits vorhandene Verunsicherug an den Energiemärkten noch verstärken. Quelle: Statistisches Bundesamt Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Kernenergieanteil Europa 2021 07.07.22 (2209) |
Statista: So wichtig ist die Atomkraft in Europa noch Nachdem das EU-Parlament am 6.7.22 den Vorschlag der EU-Komission gebilligt hat, Investitionen in bestimmte Gas- und Atomkraftwerke in der Taxonomie-Verordnung als nachhaltig einzustufen, befürchten Kritiker einen Ausbau der Atomkraft, obwohl deren Hauptrisiken (Atommüll, Terrorangriffe, Proliferation, Havarien) sich vermutlich noch verstärken werden. Aus diesem Anlass listet die Grafik die Top10-Staaten in Europa gemessen am Anteil der Kernkraft an der Stromproduktion 2021 (in %): 〈FR 69,0 UA 55,0 SI 52,3 BE 50,8 HU 46,8 FI 32,8 SE 30,8 CH 28,8 UK 14,8 DE 11,9〉. Die durch den Krieg in der Ukraine wachsende Energieverknappung in Deutschland hat eine kontroverse Debatte über die Laufzeitverlängerung der verbliebenen drei AKW ausgelöst, die laut Atomausstieg Ende 2022 vom Netz gehen sollen. 2021 speisten sie ca. 34 TWh Strom ein (zum Vergleich: Photovoltaik: 45 TWh (↗); DE gesamt: 582 TWh). Quelle: IAEA Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Photovoltaik-Ausbau DE 2009-2021 21.06.22 (2204) |
Statista: Photovoltaik wieder im Aufwärtstrend Im März 2022 waren in Deutschland rund 2,2 M Photovoltaik (PV)-Anlagen installiert mit einer Nennleistung von 58,4 GW. Nachdem der PV-Zubau (in GW) vom Hochpunkt 2011|7,9 stark einbrach auf den Tiefpunkt 2016|1,1, stieg er seitdem laufend auf zuletzt 2021|5,5. Auch der PV-Anteil an der Stromerzeugung ist gestiegen von Q1-21|4,7% auf Q1-22|6,3%. 2018-2021 variierte der eingespeiste PV-Strom (in TWh/m) im Jahresverlauf zwischen etwa 0,5 bis 1 im Winter und knapp 5 bis über 6 von Apr. bis Aug. (Maximum: Juni 21|6,9). PV-Strom (TWh/a): '15 38,1 '16 37,6 '17 38,8 '18 44,3 '19 45,2 '20 49,5 '21 50,0 (↗). Quelle: ISE Statistische Bundesamt Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Kohlekraft DE 2001-2021 20.06.22 (2203) |
Statista: Deutschland hat Kohlekraft um 11 Gigawatt reduziert In Reaktion auf die Drosselung der Erdgaszufuhr aus Russland (➔) hat Wirtschaftsminister Robert Habeck angekündigt, Erdgas bei der Verstromung einzusparen, um die Erdgasspeicher für den kommenden Winter zu füllen (↗). Ersatzweise soll die Kohleverstromung einstweilen wieder ausgeweitet werden. Aus diesem Anlass zeigt die Grafik die Entwicklung der Kohlekraft-Kapazitäten 2000-2021 (Zubau|Abbau|Saldo, in GW): Bilanz insgesamt (GW): 13,78 Zubau - 24,31 Rückbau = - 10,54 Saldo. Stromkraft 2021 (GW): Braun-/Steinkohle 20,0/19,9; Wind 63,0; PV 56,2; Gas 31,7; Wasser 14,2; Biomasse 11,5; Atom 8,1; Geothermie u.a. 8,0 (↗). Der Steinkohlebergbau in DE wurde 2018 eingestellt, der Braunkohletagebau dauert an (2020: 107 Mt). Importiert wurden 31,8 Mt Steinkohle, 45% aus RU. (Daten 2020, BGR-2021). Quelle: Global Coal Plant Tracker Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Heizungsarten Wohnungen DE 1995,2020 27.04.22 (2167) |
Statista: Mehrheit der Wohnungen werden mit Gas und Öl beheizt Die Grafik vergleicht den Anteil der Energieträger beim Heizen von Wohnungen in Deutschland der Jahre 1995|2020 (in %): ➊ Gas 39,6|49,5 ➋ Öl 39,0|25,0 ➌ Fernwärme 8,2|14,1 ➍ Strom 5,6|2,6 ➎ Wärmepumpe 0,0|2,6 ➏ Sonstige 11,0|6,2. Der Langzeitvergleich zeigt, dass die Wärmewende im Gebäudebestand kaum vorangekommen ist. Nur bei Neubauten ist zuletzt ein deutlicher Trend hin zu Erneuerbaren Energien (EE) zu erkennen, vor allem Ersatz von Erdgas (44,1➘33,2%) durch Wärmepumpen (24,0➚35,5%) (Vergleich 2016, 2020 ➔). EE-Heizungen sind zwar teurer bei der Anschaffung (↗), aber sparsamer bei den Betriebskosten. Quelle: BDEW (pdf Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromerzeugung Kosten DE 2021 12.04.22 (2158) |
Statista: Folgekosten von Atomstrom am höchsten Auch wenn der Ökostromanteil bis 2030 auf 80% gesteigert werden soll (↗), bleibt wegen des Atom- (Ende 2022) und Kohleausstiegs (2030 ↗) eine Lücke in der Stromerzeugung, die vor dem Ukrainekrieg vor allem mit Erdgaskraftwerken überbrückt werden sollte. Da Erdgas nun jedoch durch die Kriegsfolgen keine Versorgungssicherheit mehr bietet, wird zunehmend diskutiert, die drei noch laufenden AKW nicht planmäßig Ende 2022 abzuschalten. Neue Brennstäbe würden jedoch erst ab Herbst 2023 nachgefüllt werden können; auch müssten umfangreiche Sicherheitsprüfungen erfolgen sowie neues Personal eingestellt und geschult werden. Außerdem erweist sich die Atomenergie bei den gesamtgesellschaftlichen Kosten* mit Abstand als die teuerste Variante der Stromerzeugung (in ct/kWh): ➊ Atom 37,8 ➋ Braunkohle 25,5 ➌ Steinkohle 23,3 ➍ Solar 22,8 ➎ Wind-Offshore 18,5 ➏ Wind-Onshore 8,8. * Marktpreis + Subventionen + Folgekosten (Umwelt, Klima, Gesundheitsschäden) Quelle: FÖS (pdf) Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Atomkraft EU 2020 04.03.22 (2120) |
dpa-Globus 15242: Atomkraft in der EU In der EU wurden 2020 insgesamt 683,5 TWh Atomstrom erzeugt, die sich auf 13 Länder verteilen (Rangfolge in TWh): 〈FR 353,8 DE 64,4 ES 58,3 SE 49,2 BE 34,4 CZ 30,0 FI 23,3 BG 16,6 HU 16,1 SK 15,4 RO 11,5 SI 6,4 NL 4,1〉 . Beim Anteil des Atomstroms am EEV ergibt sich eine andere Reihenfolge, bei der Frankreich (41,1%) und Schweden (31,4%) an der Spitze liegen (DE 6,2%). Energiemix der EU 2019: Anteile am PEV in %: Fossil (Erdöl 36,3 Erdgas 22,3 Kohle 12,7) 71,3; Atomenergie 13,1; EE 15,5; Andere 0,1. In Deutschland wurden Ende 2021 drei Atomkraftwerke abgeschaltet, die restlichen drei sollen Ende 2022 folgen (➔). Quelle: Eurostat Eurostat BUND | Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Internet Stromverbrauch, Treibhausgase 02.03.22 (2116) |
Statista: So viel Energie verbraucht das Internet Zum internationalen Tag des Energiesparens am 05.03. informiert die Grafik über den Stromverbrauch und weitere klimarelevante Aspekte des Internets. Der gesamte Stromverbrauch Deutschlands betrug 2021 582 TWh (➔), davon entfielen auf das Internet (Betrieb der Netze und Rechenzentren) 2,5 TWh. Wäre das Internet ein Land, läge es beim THG-Ausstoß auf Rang 6 (Anteil am Welt-THG-Ausstoß in %): 〈CN 30,7 US 13,6 IN 7,0 RU 4,5 JP 3,0 Internet 2,8 IR 2,1 DE 1,9 SA 1,8 SK 1,7〉. Das Datenvolumen ist seit 2014 ständig gewachsen: geschäftlich|privat in EB/Monat: '14 12|48 '15 14|59 '16 18|78 '17 22|100 '18 27|129 '19 34|167 '20 42|212 '21 52|267 '22 63|333 . Da jede Aktion im Internet vielfältige Prozesse der Datenverarbeitung auslöst, entstehen entlang der gesamten Kaskade von Abläufen erhebliche THG-Emissionen (in gCO2e pro Aktion): ➊ Google-Suchanfrage 0,2 ➋ Spam-Email 0,3 ➌ E-Mail ohne Anhang 4 ➍ E-Mail mit Foto 30 ➎ 1 Stunde Video-Stream/ -Konferenz 3200 ➏ Bitcoin-Transaktion 313000. Eine weitere Teil-Grafik zeigt, dass Glasfasernetze bis 15 mal weniger Strom verbrauchen als kupferbasierte Netze. Zum Schluss 5 Tipps, wie das Internet nachhaltiger genutzt werden kann: ➊ Ökostrom ➋ nachhaltiger Provider ➌ grüne Suchmaschine ➍ mobiles Streaming vermeiden ➎ energiesparende Hardware. Quelle: BMWi, check24, Cisco-Systems, destatis et.a. Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Erdgasspeicher DE 01.-02.2022 24.02.22 (2109) |
Statista: Deutsche Erdgas-Reserven schrumpfen schnell Der Füllstand der Erdgasspeicher in Deutschland ist von 53,7% anfang Januar auf aktuell 30,4% gesunken. Deutschland ist in hohem Grad abhängig von Energieimporten aus Russland: Erdgas 57%, Kohle 36%, Erdöl 29% (➔). Sollte Russland seine Energieexporte nach Deutschland reduzieren oder gar einstellen (oder umgekehrt: Sanktionen/ Embargo der EU), droht mindestens ein kräftiger Anstieg der Energiepreise (Gas-, Öl-, Strompreise ↗), möglicherweise sogar ein Engpass in der Energieversorgung, der aber durch verstärkten Import von Flüssigerdgas (LNG) (➔) gemildert werden könnte (↗). Quelle: Gas Infrastructure Europe Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromkosten DE 2021 21.02.22 (2101) |
Statista: Erneuerbare Energie oft günstiger als konventionelle Ökostrom kann - abhängig von der Technologie - deutlich preiswerter sein als konventioneller Strom, wie die Grafik an den Stromgestehungskosten für 9 verschiedene Kraftwerkstypen darstellt. Die Bandbreite (in ct/kWh) reicht von Gasturbinenkraftwerken (11,5-29,0) bis Photovoltaik (3,1-11,0) und Wind-Onshore (3,9 bis 8,3). Die hohe Bandbreite bei z.B. Photovoltaik resultiert vor allem aus dem Kostenunterschied verschiedener Batteriesysteme. Der Kostenvorteil bei EE-Strom wird sich im Zuge steigender CO2-Preise (bis 2025 auf 55 €/tCO2 ➔) und möglicherweise steigender Rohstoffpreise (Erdgas, Kohle, Öl) vergrößern. Der EE-Anteil an der Stromproduktion betrug zuletzt (2021) 40,9% (➔), im Wärme-|Verkehrssektor dagegen nur 15,2%|7,3% (2020: ➔). Quelle: ISE (pdf) Statista: Infotext Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Ökostrom-Anteil DE 2011-2021 04.02.22 (2087) |
dpa-Globus 15182: Strom aus erneuerbaren Energien Der Anteil des Ökostroms (in TWh|%) ist in Deutschland von 2011:123,8|20,4 laufend gestiegen auf 2020:249,7|44,1, danach erstmals gesunken auf 2021:238,0|40,9, weil der On-|Offshore-Windstrom um 12%|7% nachließ. Die Grafik zeigt die Entwicklung der Ökostromenergien 2011-2021 (TWh, 2021-sortiert): ➊ Onshore-Wind: 49,2|92,0 ➋ Photovoltaik: 19,6|51,2 ➌ Biomasse: 32,1|43,9 ➍ Offshore-Wind: 0,6|25,3 ➎ Wasserkraft: 17,7|19,7. Zum Erreichen der Klimaziele (2030: 437 MtCO2e; 2045: Klimaneutraliät ➔) ist ein enormer EE-Ausbau erforderlich: laut Koalitionsvertrag (pdf) sollen 80% des für 2030 veranschlagten Stromverbrauchs von 690-750 TWh durch Erneuerbare Energien erzeugt werden (S. 55u). Quelle: BDEW BDEW | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch_DE Sektoren 2011-2021 21.01.22 (2081) |
dpa-Globus 15154: Wer wie viel Strom verbraucht Der Nettostromverbauch Deutschlands (in TWh) ist von anfangs 2011|537 gesunken auf das Bereichstief 2020|490 (Coronakrise) und zuletzt wieder gestiegen auf 2021|505.
Quelle: BdEW | Infografik
|
|||||||||||||||||||||||||||||||||||||
THG-Emissionen Stromerzeugung 18.01.22 (2080) |
Statista: So stark belastet die Stromerzeugung das Klima Die Grafik listet die Treibhausgas(THG)-Emissionen (Lebenszyklusanalyse¹) von Technologien zur Stromerzeugung (Bandbreite** in gCO2e/kWh): St- 753-1095 Er- 403-513 St+ 149-470 Er+ 92-221 Wa 6,1-147 CSP 14-122 PV 7,4-83 Wi 7,8-23 At 5,1-6,4 *. * Steinkohle bzw Erdgas ohne/mit CCS; Wasserkraft; CSP; PV; Windkraft; Atomenergie ** abhängig vom lokalen Strommix und weiteren Faktoren 1 Bei der Lebenszyklusanalyse (LCA) werden die gesamten THG-Emissionen bilanziert, von der Vorkette (z.B. Rohstoffe für den Anlagenbau; Förderung/ Aufbereitung/ Transport energiehaltiger Stoffe (Kohle, Erdgas, Uran)) über den laufenden Betrieb (vor allem CO2 beim Verbrennen fossiler Energieträger) bis zum Abriss/ Entsorgung. Die meisten Emissionen sind der eigentlichen Stromproduktion vor-/ nachgelagert, z.B. bei AKW der Uranabbau und die Herstellung der Brennelemente sowie am Ende der Reaktorrückbau und die langfristige Lagerung des radioaktiven Atommülls (UBA ↗) . Insbesondere die THG-Emissionen der Atommüll-Endlagerung gelten als kaum bilanzierbar, weshalb Abriss und Entsorgung meist nicht einbezogen werden (z.B. Ökoinstitut 2007). Quelle: United Nations Economic Commission for Europe (pdf) Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Atomreaktoren Welt 2021 20.12.21 (2067) |
Statista: Asien setzt auf Atomstrom Ende 2021 gehen drei weitere Atomkraftwerke (Brokdorf, Grohnde, Grundremmingen C) vom Netz, die drei dann noch verbleibenden (Emsland, Neckarwestheim 2, Isar 2) sollen Ende 2022 folgen, womit der Atomausstieg in Deutschland abgeschlossen wird. Vor diesem Hintergrund listet die Grafik die Zahl der Kernreaktoren in den Weltregionen nach 3 Kategorien: im Bau | in Planung | vorgeschlagen: Asien 35|56|220 Europa 15|37|51 Nahost/Afrika 3|4|25 Lateinamerika 2|1|9 Nordamerika 2|4|25 Von den weltweit 441 aktiven Reaktoren sind etwa 2/3 älter als 30 Jahre, darunter 18 in Grenznähe zu Deutschland. Relativ neu sind nur die Reaktorblöcke in Chooz (21|21 Jahre) und Temelin (21|23 Jahre). Quelle: World Nuclear Association Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Heizungsarten DE 2020 22.10.21 (2063) |
dpa-Globus 14982: So werden die Wohnungen warm Anteil (%) der Heizungsarten im Bestand | in Neubauten 2020: ➊ Erdgas 49,5|33,2 ➋ Öl 25,0|0,3 ➌ Fernwärme 14,1|24,4 ➍ Wärmepumpen 2,6|35,5 ➎ Strom 2,6|1,3 ➏ Holz/-pellets, Solarthermie u.a. 6,2|5,4. Im Bestand kommt die Wärmewende nur langsam voran: 3/4 der Wohnungen werden immer noch fossil beheizt. Immerhin werden Neubauten vermehrt mit Fernwärme oder Elektro-Wärmepumpe beheizt, deren THG-Ausstoß sich im Zuge des Ökostrom-Ausbaus immer mehr verringert. Wärmepumpen mit hoher Effizienz (JAZ=4) pumpen 4 kWh Wärme aus der Umgebung in die Wohnung mit einem Aufwand von 1 kWh Strom und einem CO2-Ausstoß von 389 g (↗ Tabelle 1/Spalte 6), also 97,3 g/kWh (Erdgas 201➔). Quelle: BdEW | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Ökostrom-Anlagen DE 2019 18.10.21 (2011) |
Statista: Erneuerbarer Strom ist Privatsache Der Anteil Erneuerbarer Energien (EE) am Energieverbrauch (EEV) in Deutschland ist von 2005|7,1% auf 2020|19,6% gestiegen, beim Strom zuletzt sogar auf 45,4% (➔). Vor diesem Hintergrund zeigt die Grafik die Verteilung der Eigentümer an der installierten Ökostrom-Leistung (Wind-, Solar-, Bioenergie, Wasserkraft, Geothermie) 2019 (in %): ➊ Privatpersonen 30,2 ➋ Energieversorger 17,2 ➌ Projektierer 14,2 ➍ Fonds/Banken 14,1 ➎ Gewerbe 13,2 ➏ Landwirte 10,2 ➐ Sonstige 0,8. Durch die auf 20 Jahre garantierte Einspeisevergütung im EEG waren es anfangs vor allem die BürgerInnen, die in Ökostrom investiert haben. Durch Änderungen im EEG (u.a. Ausschreibung von Anlagen) nimmt der Anteil von finanzkräftigen Investoren inzwischen zu. Die verschärften Klimaziele (➔) erfordern jedoch einen weitaus stärkeren EE-Ausbau als bisher, verbunden mit wachsenden Akzeptanzproblemen, die um so eher gemindert werden können, je besser die Möglichkeiten zur Beteiligung im Rahmen von Bürgerenergie werden. Quelle: AEE Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
EEG-Umlage DE 2011-2022 15.10.21 (2008) |
Strom-Report: Entwickllung der EEG-Umlage 2011 bis 2022 Die Grafik zeigt die Entwicklung der EEG-Umlage für Haushalts- und Gewerbekunden in Deutschland in ct/kWh: die Umlage stieg von 2011|3,53 auf das Maximum 2017|6,88 und sank dann etwas unter Schwankungen auf 2021|6,5. 2022 wird die EEG-Umlage deutlich sinken auf 3,72, hauptsächlich aus 3 Gründen: 1) hohes Guthaben von 4,5 G€ auf dem EEG-Konto 2) steigende Strompreise senken die Umlage (= Einspeisevergütung - Börsenstrompreis) 3) 0,934 ct/kWh aus der CO2-Steuer (2022: 30 €/t) verringern die Umlage Quelle: STROM-REPORT
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch DE 2010-2020 15.10.21 (2007) |
dpa-Globus 14959: Wer wie viel Strom verbraucht In Deutschland ist der Nettostromverbrauch (in TWh) von 2012|541 auf 2020|488 gesunken (-1,28%/a *), wobei der Rückgang im letzten Jahr (4,5%) wegen der Coronakrise herausragt. Die Grafik schlüsselt die Entwicklung in den vier Sektoren auf . Entgegen dem bisherigen Trend wird der Stromverbrauch bis 2030 auf rund 700 TWh/a steigen, da im Zuge der Energiewende u.a. immer mehr elektrische Wärmepumpen und Elektroautos zum Einsatz kommen. Geplant ist zusätzlich die großvolumige Erzeugung von Wasserstoff aus Strom per Elektrolyse. Außerdem wird die angestrebte verstärkte Digitalisierung zusätzlich den Strombedarf erhöhen durch Ausweitung der IuK-Infrastruktur (u.a. mehr Rechenzentren, Sendemasten, Geräte beim Endverbraucher). * 488 = 541(1+ p)8 ⇒ p = 8.Wurzel(488/541) -1 = -1,28% Quelle: BdEW BMWi | Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Strompreise EU 2020 01.10.21 (1983) |
dpa-Globus 14936: So viel kostet der Strom Im ersten Halbjahr 2020 betrug der Strompreis im Durchschnitt der 27 EU-Länder 21,34 Ct/kWh. In 6 Ländern lag er darüber. Ranking (in ct/kWh *): 〈DE 30,43 DK 28,33 BE 27,92 IE 24,13 ES 22,39 IT 22,26〉 ... 〈HU 10,31 BG 9,97〉 . Die Grafik listet außerdem die Preisänderung in % zum 1.Halbjahr 2019. In 17 Ländern ist der Strompreis gesunken, am stärksten in den Niederlanden (-31%), Deutschland (-1,5%). Den höchsten Anstieg verzeichnet Litauen (+13,6%) Hinweis (zgh): In Deutschland entfallen etwas mehr als die Hälfte des Strompreises auf Steuern, Abgaben und Umlagen (➔) (➔) Weitere Daten zum Strompreis ➔ * ct = €/100; mittlerer Haushalt mit Jahresverbrauch 2,5 bis 5,0 MWh Quelle: Eurostat | Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Windkraftausbau DE 2015-2020 23.09.21 (1979) |
Statista: Flaute beim Windkraft-Ausbau Die Windenergie hat in Deutschland mit Abstand den höchsten Anteil am Ökostrom (➔) und ihr zügiger starker Ausbau ist notwendig für die Energiewende. Stattdessen ist der Zubau nach 2017 stark eingebrochen, wie die Zeitleiste 2015 bis 2020 zeigt (On-|Offshore, in MW): '15 3731|2528 '16 4625|941 '17 5333|1250 '18 2402|1245 '19 1078|1223 '20 1431|219 . Etliche deutsche Firmen sind inzwischen in Konkurs gegangen und viel Knowhow ist ins Ausland abgewandert (↗). Immer noch wird der gesamte EE-Ausbau erschwert und verzögert durch zeitraubende Bürokratie (lange Verfahren bei Planung, Genehmigung, Einsprüchen und Klagen). Quelle: Deutsche WindGuard Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Strommix DE H1.2020|2021 13.09.21 (1972) |
Statista: Kohle wieder wichtigster Energieträger Hauptsächlich durch ein besonders windreiches|windarmes 1.Quartal 2020|2021 hat sich der Strommix in Deutschland deutlich weg von den erneuerbaren hin zu den fossilen Energien verschoben, wie die Verteilung der in Deutschland eingespeisten Strommenge in H1.20|H1.21 zeigt (in %): Windkraft 29,1|22,1; Photovoltaik 10,0|9,4; Biogas 6,1|5,9 Kohle 20,8|27,1; Erdgas 12,8|14,4; Kernenergie 12,1|12,4; In H1.20|21 wurden insgesamt 248,9|258,9 TWh Strom verbraucht, darunter 48,1|56,0% aus konventionellen Quellen (Kohle, Erdgas, Kernenergie). Der Kohlestrom stieg am kräftigsten (+35,5%), vor allem die besonders THG-intensive Braunkohle.Die Zahlen untermauern wieder einmal, dass zum Erreichen der Klimaziele (➔) der Ausbau der Erneuerbaren und der Strominfrastruktur (Netze, Speicher ➜) drastisch erhöht werden muss. Quelle: Statistisches Bundesamt Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
EE-Quote DE 2005-2020 30.07.21 (1958) |
dpa-Globus 14809: Erneuerbare Energien Der Anteil der Erneuerbaren Energien (EE) am gesamten Endenergieverbrauch (EEV) in Deutschland ist von 2005|7,1% auf 2020|19,6% gestiegen, wobei sich die Sektoren Strom | Wärme/Kälte | Verkehr sehr unterschiedlich entwickelt haben: 2005 10,3|8,0|3,6 2020 45,4|15,2|7,3 . Nur der EE-Anteil beim Strom kann gemessen an den Klimazielen (➔) als ausreichend bewertet werden, bei Wärme/Kälte und besonders im Sektor Verkehr besteht dagegen enormer Nachholbedarf. Da die Energiewende auch in diesen beiden Sektoren in hohem Maß auf starker Stromausweitung beruht (Wärmepumpen bzw. Elektro-Autos), wird künftig weitaus mehr Ökostrom benötigt (⤴), d.h. er muss viel stärker und schneller ausgebaut werden als in den letzten 15 Jahren, ebenso Stromnetze und Stromspeicher, um Phasen von Spitzenlast und Dunkelflaute zu bewältigen (⤴). Quelle: BMWI-EE | Infografik | Tabelle/Infos | Serie | Zeitreihe
|
|||||||||||||||||||||||||||||||||||||
Ökostrom DE 2010-2020 16.04.21 (1916) |
dpa-Globus 14602: Strom aus erneuerbaren Energien Der Anteil des Ökostroms an der erzeugten Strommenge in Deutschland ist von 2010 bis 2020 gestiegen von 101 TWh (17 %) auf 246 TWh (44,5%). Die Grafik zeigt die Entwicklung der Ökostromenergien von 2010 bis 2020 (in TWh, sortiert nach 2020): ➊ Wind-Onshore 38,8|105,3 ➋ Photovoltaik 11,7|50,4 ➌ Biomasse 29,1|44,3 ➍ Wind-Offshore 0,2|27,3 ➎ Wasserkraft 21|18,5. Quelle: BdEW | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Windkraft 01.04.21 (1903) |
dpa-Globus 14565: Windkraft - Nutzen und Probleme Ende 2020 erzeugten rund 29600 Onshore-Windkraftanlagen (WKA) mit knapp 55 GW Nennleistung 41% des Ökostroms, zusammen mit den Offshore-WKA sogar mehr als 50%. Vor diesem Hintergrund informiert die Grafik über die Vor- und Nachteile von Windenergie, u.a.: • kostenlose Primärenergie (Wind) • sehr geringe Emissionen von Treibhausgasen und Schadstoffen • schnelle Amortisierung ▮ Beeinträchtigung des Landschaftbildes • großer Flächenbedarf von Windparks • Kollisionsgefahr für Vögel und Fledermäuse • Lärm • mangelnde Versorgungssicherheit durch volatile Stromerzeugung • teils schwer recycelbare Materialien (z.B. Rotorblätter). Quelle: UBA BMWi BMWi BWE | Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch DE Haushalte 2019 26.02.21 (1870) |
dpa-Globus 14503: Stromverbrauch in Deutschlands Haushalten Der Stromverbrauch in den Haushalten Deutschlands (in TWh) ist von 2009|139,2 auf 2019|125,7 gesunken mit folgenden Anteilen der Anwendungsbereiche (2019 in %): ➊ Wärmen (Kochen, Waschen, Trocknen, Bügeln) 30 ➋ Kühlen (Kühl-/Gefriergeräte) 23 ➌ IuK 17 ➍ Warmwasser (Baden, Duschen, u.ä.) 12 ➎ Beleuchtung 8 ➏ Heizung 6 ➐ mechanische Haushaltsgeräte 3 ➑ Klimakälte 1. Der Heizungsanteil (6%) ist gering, da hier andere Energieträger (Erdgas, Öl, Fernwärme ➔) dominieren. Als Folge der Klimaerwärmung mit häufigeren Hitzewellen (wie z.B. 2018) wird der Anteil der Klimakälte (1%), der bisher kaum eine Rolle spielte, vermutlich wachsen (⤴) Quelle: BDEW | Infografik
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 2010-2020 19.02.21 (1753) |
dpa-Globus 14483: Der Strommix Die Grafik setzt die Zeitreihe zum Anteil der Energieträger an der Bruttostromerzeugung in Deutschland ab 2010 in das Jahr 2020 fort: Anteile 2020 (vorläufig) in % : EE 45; Kernenergie 11; Steinkohle 8; Braunkohle 16; Erdgas 16; Sonstige 4. Die 45%-EE verteilen sich so (%): Wind-Onshore 19 Photovoltaik 9 Biomasse 8 Wind-Offshore 5 Wasserkraft 3 Siedlungsabfälle 1 . Die Bundesregierung will den EE-Anteil bis 2030 auf 65% steigern. Quelle: BDEW Bundesregierung | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch Bitcoin 17.2.21 17.02.21 (1867) |
Statista: Bitcoin verbraucht mehr Strom als die Schweiz Der $-Kurs der Kryptowährung Bitcoin ist seit 2011 von unter 10 auf aktuell über 50.000 gestiegen, weshalb die Digitalwährung wieder verstärkt in den Fokus gerät, u.a. der hohe Stromverbrauch. Bitcoins werden "geschürft" durch aufwendige Rechnenoperationen und Transaktionen werden per Blockchain auf einer Vielzahl von Computern und in Datenzentren weltweit dezentral geteilt, beides verbunden mit einem enormen Stromverbrauch, der inzwischen weltweit auf 40 bis 265 TWh pro Jahr geschätzt wird. Laut Cambridge Bitcoin Electricity Consumption Index (CBECI) liegt der Stromverbrauch aktuell bei 119 TWh und übersteigt damit den Stromverbrauch der meisten Länder: nur 30 von insgesamt 219 im CIA Factbook erfassten Staaten hatten 2019 einen höheren Stromverbrauch. Vor diesem Hintergrund listet die Grafik ein Ranking mit 7 ausgewählten Staaten (TWh im Jahr 2019): 〈CN 6510 US 3990 DE 524 UK 301 Bitcoin 119 NL 111 CH 56 NZ 41〉 Quelle: CBECI Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Erneuerbare Energien EU28 2020 27.01.21 (1852) |
Statista: Österreich führend bei erneuerbarer Energie Im Jahr 2020 wurde in der EU28 erstmals mehr Strom aus erneuerbaren (EE) (38%) als aus fossilen Energien (FE) (37%) erzeugt. Die Grafik zeigt die Anteile dieser beiden Energiequellen sowie der Atomenergie (AE) an der Stromproduktion für den EU-Durchschnitt und für ausgewählte Länder als Diagramm, hier als Trippel EE|FE|AE (%): ➊ AT 79|21|0 ➋ DK 78|22|0 ➌ DE 44|45|11 ➍ ES 43|34|22 ➎ IT 43|57|0 ➏ UK 42|41|17 ➐ FR 23|9|67 Vor allem Wind- und Solarenergien legten 2020 zu und produzierten 51 TWh mehr Strom als im Vorjahr. Quelle: Agora Energiewende Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromerzeugung DE 2015, 2020 06.01.21 (1826) |
Statista: Wind ist wichtiger als Kohle 2020 erzeugten die Erneuerbaren Energien (EE) im Jahresverlauf erstmals mehr Strom (50,9%) als die konventionellen. Zur Verdeutlichung des EE-Ausbaus vergleicht die Grafik die Anteile der Energiequellen an der Stromerzeugung der Jahre 2015|2020 (in %, sortiert nach 2020): ➊ Wind 14,5|27,2 ➋ Kohle 34,0|24,3 ➌ Kernenergie 15,9|12,6 ➍ Gas 5,5|12,2 ➎ Solar 7,1|10,6 ➏ Biomasse 8,6|9,4 ➐ Wasserkraft 3,4|3,8. Als Folge der COVID-19-Pandemie sank die Stromproduktion auf 484,6 TWh, 5,6% weniger als 2019. Quelle: ISE Statista: Infotext Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Kohlekraftwerke 11.12.20 (1817) |
Statista: China setzt am stärksten auf Kohkekraft Seit dem Jahr 2000 wurden weltweit neue Kohlekraftwerke mit einer Nennleistung von zusammen 1365 GW installiert (Vgl: alle aktuellen AKW: 392 GW). Top10-Länder (GW) 〈CN 944 IN 179 ID 27 US 26 KR 25 JP 24 VN 19 DE 14 TR 13 MY 13〉. China (Rang 1) baut zwar die Erneuerbaren Energien kräftig aus, ebenso aber die Kohlekraft: seit Jahren wird mehr neue Leistung installiert als aus dem Netz geht. Ergänzung (zgh): In Deutschland (Rang 8) setzte die Bundesregierung am 06.06.18 die Kohlekommission ein, die Empfehlungen zur Umsetzung des Kohleausstiegs ausarbeitete und am 26.01.19 als Abschlussbericht (pdf) vorlegte, der - mit einigen wesentlichen Änderungen - als Ausstiegsgesetz am 08.08.20 beschlossen wurde. Danach soll in Deutschland der Kohleausstieg spätestens 2038 abgeschlossen sein. Dennoch wurde das umstrittene Steinkohle-Kraftwerk Datteln-4 (1,1 GW) am 30.05.20 in Betrieb genommen. Laut Pariser Klimaabkommen vom 12.12.2015 soll die globale Erwärmung eingedämmt werden auf unter 2°C, möglichst sogar 1,5°, wozu realistischerweise ein weltweiter Kohleausstieg bis 2030 notwendig ist. Selbst nach 5 Jahren Klimaabkommen ist die aktuelle Kohlepolitik vieler Länder nach wie vor unvereinbar mit dem 2°C-Ziel. Quelle: Global Coal Plant Tracker Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Kernenergie DE 1990-2019 28.09.20 (1777) |
Statista: Ende der Atomkraft? Das Diagramm zeigt den Anteil der Kernenergie an der Bruttostromerzeung in Deutschland von 1990 bis 2019 (in TWh): Vom Höchstwert 2000|169,6 sank er laufend auf zuletzt 2019|75,1 ƵR . Wenn der Atomausstieg planmäßig Ende 2022 abgeschlossen wird, müssen die dann fehlenden 75 TWh Atomstrom ersetzt werden. Da der Ausbau der erneuerbaren Energien und von großvolumigen Stromspeichern viel zu langsam erfolgt, kann die Stromlücke bei fortschreitendem Kohleausstieg einstweilen nur durch Strom aus Erdgas und ergänzend Import geschlossen werden, was den CO2-Ausstoß erhöht, weil Atomstrom (3,7 bis 110 gCO2e/kWh ohne Endlagerung ➚) deutlich CO2-ärmer ist als Erdgasstrom (428 gCO2e/kWh ➚). Aus diesem Grund plädieren* manche Experten (➚) für den Weiterbetrieb von Atomkraftwerken über 2022 hinaus (➚), was aber u.a. wegen der Atommüll-Problematik (➚) wenig realistisch erscheint. * Moormann-Wendland-Memorandum Statista: Infotext Infografik | Zeitreihe
|
|||||||||||||||||||||||||||||||||||||
Kohlekraftwerke Welt H1-2020 03.08.20 (1730) |
Statista: 2/3 aller Kohlekraftwerke stehen in China, Indien und den USA Zum ersten Mal sank die Nennleistung der Kohlekraftwerke weltweit: im 1.Halbjahr 2020 betrug der Abbau|Zubau 21,0|18,3 GW, d.h. die Nennleistung sank um 2,7 GW. Weltweit sind 2.452 Kohlekraftwerke in Betrieb, die Grafik listet die Anzahl in den Top8-Ländern, zusammen 1986, das sind 81%, die sich so verteilen: 〈CN 43,9% IN 11,5 US 10,7 JP 3,4 RU 3,4 ID 3,1 DE 3,0 PL 2,0〉 China liegt mit weitem Abstand an der Spitze, die Top3 umfassen bereits 66,1%. Die 74 Kohlekraftwerke in Deutschland sollen gemäß Ausstiegsplan (png/⤴) bis 2038 nach und nach stillgelegt werden gemäß Kohleausstiegsgesetz. Datenquelle: SZ/ Global Coal Plant Trackers Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
THG-Emissionen Braunkohlekraftwerke DE 2018 01.07.20 (1703) |
Statista: Schmutzige Kohle Gemäß Kompromiss in der Kohlekommission soll die Kohleverstromung in Deutschland schrittweise bis spätestens 2038 beendet werden, weil sie sehr THG-intensiv ist (bis 1200 gCO2e/ kWh). Das entsprechende Kohleausstiegsgesetz soll am 3.7.20 im Bundestag beschlossen werden. Aus diesem Anlass zeigt die Grafik den THG-Ausstoß der 7 Braunkohlekraftwerke in Deutschland 2018 (in MtCO2e): ➊ Neurath 32,2 ➋ Niederaußem 25,9 ➌ Jänschwalde 23,1 ➍ Boxberg 19,1 ➎ Weisweiler 16,9 ➏ SchwarzePumpe 12,5 ➐ Lippendorf 11,7 (Summe = 141,1). Laut Kohleverstromungsbeendigungsgesetz sollen die Stromkonzerne RWE und LEAG für entgangene Gewinne aus der Verstromung von Braunkohle mit 4,35 G€ entschädigt werden (⤴), weitere hunderte Millionen für Steinkohle könnten noch hinzukommen. Die Modalitäten wie auch die Höhe der Entschädigungen werden weithin kritisiert, zumal eine Reihe älterer Kraftwerke als längst abgeschrieben gelten (⤴). Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Atomkraftwerke Altersverteilung Welt 2020 30.06.20 (1702) |
Statista: 2/3 aller Reaktoren sind älter als 30 Jahre Die Grafik zeigt die Altersverteilung der weltweit 441 aktiven Atomkraftkwerke (AKW): ≤10 Jahre: 14,3% │ ≤20: 7,5 │ ≤30: 12,5 │ ≤40: 45,4 │ ≤50: 19,3 │ >50: 1,1. (Quelle: IAEA). Danach sind 1/3 der AKW bereits über 30 Jahre im Einsatz, knapp 1/5 sogar über 40, so auch der Reaktor 2 im Kernkraftwerk Fessenheim, der am 29.06.20 nach 43 Jahren endgültig abgeschaltet wurde, wie schon zuvor Reaktor 1 am 22.02.20. Damit geht das AKW Fessenheim komplett vom Netz und soll ab 2040 rückgebaut werden. Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Treibhausgase DE 1990-2019 03.04.20 (1506) |
dpa-Globus 13842: Treibhausgase in Deutschland Die Kurve zeigt die Entwicklung der THG-Emissionen (MtCO2e) in Deutschland von 1990 bis 2019. In der übergreifenden Tendenz sind sie gesunken vom Anfangs-Maximum 1251 auf das End-Minimum 805, 54 (-6,3%) weniger als im Vorjahr. Die Verteilung der THG-Emissionen 2019 auf die Sektoren (Energiewirtschaft,Verkehr, Gewerbe, Haushalte, Industrie, Landwirtschaft) werden rechts in der Grafik aufgeschlüsselt . Die mit Abstand größte THG-Reduktion brachte die Energiewirtschaft mit 51 MtCO2e durch Reform des Emissionshandels, niedriger Gaspreise, Ausbau von Wind- und Solarenergie sowie Abschaltung erster Kohlekraftwerke. Im Verkehrssektor dagegen stieg der THG-Ausstoß etwas um 1,2 auf 163,5 MtCO2e, weil der Spritverbrauch trotz sparsamerer Fahrzeuge stieg infolge mehr gefahrener Kilometer. Von 1990 bis 2019 sanken die Emissionen um 35,7%. Aufgrund der Corona-Krise ist 2020 ein weiterer Rückgang zu erwarten (➔), weshalb das 2020-Ziel der Bundesregierung (-40%) noch erreichbar erscheint. Die nächste Zielmarke ist: -55% bis 2030 im Vergleich zu 1990. Quelle: Umweltbundesamt | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
EE-Anteile DE 2014-2019 16.03.20 (1649) |
UBA: EE-Anteile in den Sektoren Strom, Wärme und Verkehr Die UBA-Grafik zeigt die Entwicklung des Anteils der Erneuerbaren Energien (EE) am Bruttoendenergieverbrauch (EEV) in den Jahren 2014 bis 2019: Strom: gute Entwicklung: von 27,4 auf 42,1%: Wärme: fast Stagnation: von 14,1 auf 14,5%: Verkehr: Stagnation bei 5,6 %. Im Jahr 2019 betrug der EE-Anteil am Bruttoendenergieverbrauch insgesamt 17,1% (Vorjahr: 16,5%). Könnte der EE-Ausbau 2020 noch etwas beschleunigt werden, wäre die 18%-Vorgabe der EU-Richtlinie für Erneuerbare Energien noch erreichbar Quelle: UBA-Pressemitteilung
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch DE Q4 2019,2020 06.03.20 (1652) |
Statista: 23% weniger Kohlestrom als im Vorjahresquartal Die Statista-Grafik vergleicht den Anteil der Primärenergiearten (PEV) an der Stromerzeugung in Deutschland im 4.Quartal 2019|2020 (in %): Kohle 36,8|29,6; Windkraft 23,5|25,7; Kernenergie 12,8|14,0; Erdgas 11,8|13,8; Biogas 5,1|5,5; Photovoltaik 3,1|3,8. Laut Statistischem Bundesamt sank der Anteil von Kohlestrom um rund 23%, während der von Ökostrom auf etwas mehr als 40% stieg. Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Kohleverbrauch, China 2019,2020 03.03.20 (1651) |
Statista: COVID-19 senkt chinesische CO2-Emissionen Alljährlich sinkt der Kohleverbrauch in China nach dem Neujahrsfest, weil die Industrie im Umfeld der Ferien aus diesem Anlass herunterfährt, wodurch weniger Kohle verstromt wird. Die COVID-19-Pandemie verlängerte und verstärkte das Runterfahren im Jahr 2020, wodurch im Vergleich zum Vorjahr rund 100 Mt CO2 (25%) eingespart wurden, wie die Statista-Grafik anhand des Kohleverbrauchs der 6 größten Kraftwerksbetreiber am x.Tag nach dem Neujahrstag (25.01.2020) belegt: Vergleich 2019|2020 in kt Kohle: 10.Tag: 46,1|38,1; 20.Tag: 66,6|38,5; 30.Tag: 68,9|41,9. Quelle: CarbonBrief Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 1990-2019 03.01.20 (1592) |
dpa: Stromerzeugung in Deutschland Die Infografik zeigt die Entwicklung der Bruttostromerzeugung (in TWh) in Deutschland von 1990 bis 2019 (Anstieg von 1995|537 auf 2008|642, Einbruch 2009|597; danach schwankend zwischen 613 und 654) und die Verteilung auf die Energieträger. Daten der Jahre 1995|2010|2019 in TWh: Braunkohle 143|146|114; Steinkohle 147|117|57; Erdgas 41|89|91; Erdöl 9|9|5; Kernenergie 154|141|75; EE 25|105|243. Quelle: Agora Energiewende AGEB
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 2010-2019 03.01.20 (1591) |
dpa-Globus 13660: Der Strommix Die Grafik zeigt die Entwicklung des Anteils der Energieträger an der Bruttostromerzeugung in Deutschland von 2010 bis 2019 (Anteil 2010|2019 in %): EE 17|40; Kernenergie 22|12; Steinkohle 19|9; Braunkohle 23|19; Erdgas 14|15; Sonstige 5|5. Der EE-Anteil von 40% im Jahr 2018 verteilt sich wie folgt (%): Wind-Onshore 17 Photovoltaik 7 Biomasse 7 Wind-Offshore 4 Wasserkraft 3 Siedlungsabfälle 1 . Ergänzung (zgh): Infolge des deutlichen Anstiegs des CO2-Preises im Emissionshandel von unter 5 auf ca. 25 € ist 2019 erstmals der Anteil der Braun-|Steinkohle nennenswert gesunken von 23|13 auf 19|9% und der von Erdgas gestiegen von 13 auf 15%, der Hauptgrund für das Sinken der THG-Emissionen in Deutschland von 867 auf 811 MtCO2e. Der Kernenergie-Anteil war seit 2017 konstant 12%, nach Abschaltung von Philippsburg-2 am 31.12.19 (⤴) wird er 2020 auf ca. 10% sinken, nach Abschluss des Atomausstiegs Ende 2022 auf Null. Der dann fehlende Kernkraftstrom (ca. 75 TWh) muss möglichst zügig komplett durch EE-Ausbau ersetzt werden (ergänzt durch Erdgas- und Importstrom). Laut Ziel der Bundesregierung soll der EE-Anteil im Stromsektor bis 2030 auf 65% gesteigert werden. Quelle: BDEW Bundesregierung | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Lithium-Ionen-Akku 01.11.19 (1533) |
dpa-Globus 13529: Die Lithium-Ionen-Batterie Für ihre maßgebliche Beteiligung an der Entwicklung des Lithium-Ionen-Akkumulators wurden M. Stanley Whittingham, John B. Goodenough und Akira Yoshino 2019 mit dem Nobelpreis für Chemie geehrt. Aus diesem Anlass informiet die Grafik über die Funktionsweise sowie die Vor- und Nachteile dieses Akku-Typs. Außerdem werden drei wesentliche Entwicklungsfortschritte kurz notiert: 1976: Batterien für Solar-Uhren mit 2 Volt; 1979/80: Verdopplung der Spannung auf 4 Volt; 1985: Alltagstauglichkeit durch mehr Sicherheit und Haltbarkeit. Ergänzung (zgh): Bei Ausweitung der Elektromobiltät auf Basis von Lithium-Ionen-Akkus wird die auf absehbare Zeit nicht nachhaltige Rohstoffgewinnung vor allem von Lithium in Chile und Bolivien (➔) sowie Cobalt im Kongo (➔) immer problematischer. Quelle: Nobelpreis-Komitee | Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch Klimanlagen Welt 1990-2016 20.09.19 (1480) |
dpa-Globus 13452: Steigender Energiehunger durch Klimaanlagen Als Folge der globalen Erwärmung hat sich der Stromverbrauch (in TWh) für Klimaanlagen in Gebäuden weltweit von 1990|608 auf 2016|2021 mehr als verdreifacht (+232%). Der steigende Stromverbrauch wiederum erhöht den Ausstoß von Treibhausgasen, der wiederumg die globale Erwärmung verstärkt, wodurch noch mehr Strom für Kühlung benötigt wird, ein sich selbst verstärkender gefährlicher Teufelskreis. Die Grafik listet den Stromverbrauch (in TWh) für Klimaanlagen in ausgewählten Ländern/Regionen ab 1990 in 10er Schritten und für 2016 . Mit weitem Abstand lagen die USA (616) und China (450) vorne, gefolgt von EU (152), Mittlerem Osten (129), Japan (107) und Indien (91). Zum Vergleich: 2016 lag der Stromverbrauch in den USA nur für Kühlung (616 TWh) um 13% über dem gesamten Netto-Stromverbrauch in Deutschland (545 TWh). Quelle: IEA: "Future of Cooling" | Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Kohlestromanteil EU 2017 18.09.19 (1476) |
Statista: So abhängig ist Europa von der Kohle Die Infografik zeigt den Kohleanteil an der Stromerzeugung in 20 ausgewählten EU-Staaten im Jahr 2017. Falls das jeweilige Land den Ausstieg aus der Kohleverstromung beschlossen hat, wird zusätzlich das Ausstiegsjahr angegeben. Rangfolge (Kohleanteil in %|ggf. Ausstiegsjahr): 〈PL 81 CZ 54 GR 46 BG 45 DE 40|2038〉 ... 〈FR 3|2021 AT 3|2025 SE 1|2022〉 . Wie die Rangfolge zeigt, ist Deutschland das einzige Land, das trotz hohem Anteil von Kohlestrom den Kohleausstieg beschlossen hat, allerding erst im Jahr 2038, was viele Klimaexperten für viel zu spät halten. Weltweit (darunter China, Russland, USA) ist die Kohleproduktion 2018 wieder gestiegen auf rund 8 Gt. Datenquelle: Statista-Recherche Statista: Infotext Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Windenergie DE 2000-2018 16.08.19 (1417) |
dpa-Globus 13382: Windenergie in Deutschland Ende 2018 waren in Deutschland 29.200 Windkraftanlagen (WKA) mit einer Leistung von 52,9 GW installiert. Sie erzeugten 2018 92,2|19,3 TWh Strom onshore|offshore, zusammen 111,5 TWh (17,3% der Bruttostromerzeugung). Der jährliche Zubau von WKA im Zeitraum 2000 bis 2018 markierte sein Maximum 2002 mit 2328 Anlagen und ist zuletzt von 2017|1792 eingebrochen auf 2018|743, das Minimum im gesamten Zeitraum. Als Hauptgründe für den drastischen Rückgang nennt der BWE zu geringe Ausweisung von Flächen, fehlende oder langwierige Genehmigungsverfahren sowie Klagen und Widerspruchsverfahren. Um das Klimaziel der Bundesregierung (bis 2030 EE-Stromanteil 65%) zu erreichen, müssen laut "BEE-Szeanrio-2030" (pdf) jährlich 4700|1200 MW Onshore|Offshore-Windenergieleistung neu installiert werden. Hinzu kommen (in MW): Photovoltaik 10.000, Bioenergie 600, Wasserkraft 50, Geothermie 50. Das Szenario beruht auf der Prognose, dass der Stromverbrauch auf 740 TWh im Jahr 2030 steigen wird durch zusätzlichen Bedarf infolge des Ausbaus bei Wärmepumpen, Elektromobilität und PtX (Power-to-Gas, Power-to-Liquid). Bei dieser Prognose sind verstärktes Energiesparen und mehr Energieeffizienz bereits einbezogen. Quelle: BWE AGEB | Infografik | Tabelle/Infos | Serie | Zeitreihe
|
|||||||||||||||||||||||||||||||||||||
Windkraftausbau DE 2014-1H.2019 02.08.19 (1407) |
Statista: Flaute beim Windkraftausbau Laut BWE geht der Zubau von Windkraftanlagen (WKA) an Land in Deutschland seit 2018 deutlich zurück und war im ersten Halbjahr 2019 mit 86 WKA (287 MW Nennleistung) der niedrigste seit Einführung des EEG. Die Statista-Grafik zeigt ergänzend die Anzahl der neu gebauten WKA der vergangen Jahre: 2014|1.766; 2015|1.368; 2016|1.624; 2017|1.792; 2018|743. Als Hauptgründe für den starken Rückgang sieht der BWE unzureichende Bereitstellung von Flächen, fehlende Genehmigungen sowie Klagen und Widerspruchsverfahren. Gemäß den Klimaschutzzielen der Bundesregierung soll der EE-Stromanteil bis 2030 auf 65% gesteigert werden, wozu die Onshore-Windenergie laut "BEE-Szeanrio-2030" (pdf) jährlich um 4700 MW ausgebaut werden müsste. Ein Windenergiegipfel nach der Sommerpause soll die Ausbauprobleme angehen. Statista: Infotext Infografik
|
|||||||||||||||||||||||||||||||||||||
Hybrid-Elektroautos DE 2009-2019 12.07.19 (1488) |
dpa-Globus 13314: Hybrid- und Elektroautos 2019 Die Grafik stellt die Entwicklung der Anzahl von Elektro- und Hybridautos im Zeitraum 2009 bis 2019 dar (jeweils Jahresanfang). Die Zahl der Elektroautos stieg langsam an von 2009|1452 auf 2019|83.175, die der Hybridautos etwas stärker von 2009|22.330 auf 341.411. Antriebsarten 2019 (%): Benzin 65,9; Diesel 32,2; Flüssiggas 0,8; Erdgas 0,2; Hybrid 0,7; Elektro 0,2. Der Anteil der Hybrid- und Elektroautos ist mit zusammen 0,9% an allen PKW (47,1 M) extrem gering. Um die Elektromobilität auszuweiten, wurde 2016 ein Förderprogramm gestartet, das kürzlich bis Ende 2020 verlängert wurde: Für Elektro-|Hybridautos 4000|3000 € Förderung, eine Hälfte vom Bund, die andere als Kaufnachlass. Außerdem entfällt 10 Jahre lang die KFZ-Steuer bei Zulassung bis Ende 2020. Ergänzung (zgh): Elektroautos gelten als CO2-arm, was aber nur zutrifft, wenn bei der Produktion und beim Laden der Batterien Strom mit hohem Ökostromanteil verwendet wird, was in Deutschland mindestens bis ca. 2030 weitestgehend nicht der Fall ist. Quelle: KBA: Zeitreihe Jahresbilanz | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Stromkosten EU28 2H-2018 31.05.19 (1374) |
dpa-Globus 13224: Was kostet der Strom? Der Strompreis* für Haushalte** betrug im 2.Halbjahr 2018 im Durchschnitt der EU28 21,13 ct/kWh. Unter den EU28-Ländern variiert er um den Faktor 3,2. Ranking (Ct/kWh): 〈DK 31,23 DE 30,00 BE 29,37 IE 25,39〉 ... 〈HU 11,18 LT 10,97 BG 10,05〉 . Der SAU*-Anteil am Strompreis variiert um den Faktor 10,9. Ranking (%): 〈DK 63,3 PT 55,2 DE 54,1 SK 41,9〉 ... 〈CP 20,1 CZ 18,1 GB 16,6 MT 5,9〉 . Im EU-Durchschnitt stieg der Strompreis vom 2.H.2017 bis 2.H.2018 um 3,5 %. Die Spanne reichte von +19,6% in Zypern bis -5,4% in Lettland, in Deutschland -1,6%. * Stromerzeugung/-verteilung + SAU (Steuern, Abgaben, Umlagen) ** Durchschnittswert für Haushalte mit Stromverbrauch 2500 bis 5000 kWh/a Quelle: Eurostat | Infografik | Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
H2-Brennstoffzelle 24.05.19 (1369) |
dpa-Globus 13212: Wasserstoff-Brennstoffzelle Eine Brennstoffzelle wandelt durch chemische Reaktionen die in einem Brennstoff (hier Wasserstoff) steckende Energie in Strom und die Abfallprodukte Wasser sowie Abwärme (keine Abgase!). Da man Wasserstoff oder andere geeignete Energieträger (Methanol, Butan, Methanol) aus Erneuerbaren Energien (z.B. Elektrolyse mit Windstrom) großvolumig erzeugen, verteilen und speichern kann, gilt die Brennstoffzelle als Schlüsseltechnologie insbesondere für die Verkehrswende, z.B. als Antriebsvariante für E-Fahrzeuge, die eine deutlich größere Reichweite und schnellere Betankung ermöglichen als E-Fahrzeuge mit Batteriespeicher. Die Grafik zeigt die Funktionsweise einer Brennstoffzelle: Sie besteht im Prinzip aus zwei Kammern, die getrennt sind durch eine Membran, die Elektronen (-) sperrt, aber Protonen (+) durchlässt. Als "Brennstoff" wird Wasserstoff (H2) in die linke Kammer eingeleitet, wo er an der Anode durch einen Katalysator aufgespaltet wird in Elektronen (-) und Protonen (+). Die Protonen fließen intern durch die Membran, die Elektronen extern über einen Leiter (Strom!) zur Kathode in der rechten Kammer, wo sie beide mit Sauerstoff (O) aus der Außenluft zu Wasser (H2O) reagieren. Quelle: Uni Leipzig: Energiegrundlagen BHKW-Infozentrum: Anwendungfelder | Infografik
|
|||||||||||||||||||||||||||||||||||||
Erneuerbare Energien DE 2004|11|18 05.04.19 (1338) |
dpa-Globus 13115: Erneuerbare Energien Um das Pariser Klimaabkommen umzusetzen, will die Bundesregierung den EE-Anteil am gesamten Energieverbrauch bis 2025|2050 auf mindestens 40%|80 % steigern. Die Daten der Infografik zum EE-Anteil (in %) für die Jahre 2004|2011|2018 zeigen jedoch, dass das 2025-Ziel realistischerweise nur beim Strom (9,4|20,4|37,8) erreichbar ist. Im Verkehr (1,9|5,7|5,6) sank der EE-Anteil zuletzt sogar leicht, bei Wärme/Kälte (7,4|12,9|13,9) sowie insgesamt (6,2|12,4|16,7) steigt er viel zu langsam. Quelle: Bundeswirtschaftsministerium | Infografik | Tabelle/Infos | Serie | Zeitreihe
|
|||||||||||||||||||||||||||||||||||||
Netto-Strommix DE 2018 01.01.19 (1259) |
Strom-Report: Netto-Stromerzeugung in Deutschland Im Jahr 2018 wurden in Deutschland netto* 541 TWh Strom verbraucht, darunter (%): Erneuerbare Energien 40,2 (Windkraft 20,2; Biomasse 8,3; Photovoltaik 8,5; Wasserkraft 3,2); konventionelle Energien 59,8 (Braunkohle 24,1; Steinkohle 14; Kernenergie 13,3; Erdgas 7,4). * Stromverbrauch an den Steckdosen (Endenergie), d.h. ohne Eigenverbrauch der Kraftwerke, ohne Übertragungsverluste, ohne Eigenerzeugung in Unternehmen zum Selbstverbrauch Download Infografik Pressemitteilung
|
|||||||||||||||||||||||||||||||||||||
Wohnenergie DE 2017 12.10.18 (1210) |
dpa-Globus 12763: Energie fürs Wohnen Im Jahr 2017 betrug der Endenergieverbrauch (EEV) der privaten Haushalte für das Wohnen ("Wohnenergie") 679 TWh mit folgender Verteilung: Energieart: Gas 41,4% Strom 19,0 Öl 18,0 Erneuerbare 13,1 Fernwärme 7,7 Kohle 0,9. Energiezweck: Heizen 70,5% Warmwasser 14,0 Haushaltsgeräte (ink. Kommunikation) 8,3 Kochen, Waschen, Trocknen, Bügeln 5,6 Beleuchtung 1,5 . Der durchschnittliche EEV pro Haushalt1 2017 betrug 16.433 kWh. Der EE-Anteil ist mit 13,1% (Vorjahr 13,5%) noch weit entfernt vom Klimaziel der Bundesregierung: mindestens 30 % EE-Anteil am Brutto2-EEV bis 2030 1 ohne Mobilität und externe Effekte (u.a. Energieproduktion u.-verteilung, Entsorgung → Lebenszyklusanalyse) 2 inkl. Eigenverbrauch der Anlagen zur Strom- u. Wärmeerzeugung sowie Transport- u. Leitungsverluste durch Verteilung u. Übertragung (s. AGEB) Quelle: Statistisches Bundesamt | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Ökostrom EU 2016 05.10.18 (1204) |
dpa-Globus 12753: Ökostrom in der EU Von 2004 bis 2016 ist der Ökostrom-Anteil in der EU von 14,3 auf 29,6% gestiegen. Unter den EU-Ländern variiert er sehr stark (Faktor 13). Rangfolge (%): 〈AT 72,6 SE 64,9 PT 54,1 DK 53,7〉 ... 〈HU 7,2 LU 6,7 MT 5,6〉 . Werden 6 Beitrittskandidaten ergänzt, liegen drei vor AT an der Spitze. 〈NO 104,7 IS 95,3 AL 86,0 AT 72,6 SE 64,9〉 . Diese 5 Spitzenreiter verfügen aufgrund geologischer Faktoren über große Wasserkraft-Ressourcen, Norwegen exportiert sogar Ökostrom (Quote > 100%). Deutschland (32,2%) liegt auf Rang 11 etwas über EU28-Durchschnitt (29,6%). Rund 23% des Stroms werden aus Braunkohle, 13 % aus Gas erzeugt. Quelle: Eurostat | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Windenergie DE 2001-2017 21.09.18 (1185) |
dpa-Globus 12729: Windenergie in Deutschland Durch Windkraft wurden 2017 in Deutschland 88,7|17,9 TWh Strom onshore|offshore erzeugt, zusammen 106,6 TWh, 16,3% des Bruttostroms (654,8). Die installierte onshore-Windkraftleistung (GW) stieg im dargestellten Zeitraum von 2001 bis 2017 von anfangs 8,8 auf zuletzt 50,8. Die Grafik listet außerdem die Anzahl der 2017 in den Bundesländern neu gebauten onshore-Windenergieanlagen und ihre Gesamtzahl. Die hier erweiterte Tabelle enthält zusätzlich die Daten für die installierte Leistung. Top-Länder (GW): 〈NI 10,6 SH 6,9 BB 6,8 NW 5,4 ST 5,1〉 . Quelle: BWE-DE BWE-Bund | Infografik | Tabelle/Infos | Serie | Zeitreihe
|
|||||||||||||||||||||||||||||||||||||
Windkraftleistung Europa 2000-2017 14.09.18 (1183) |
dpa-Globus 12709: Windenergie in Europa Die in Europa installierte Windkraftleistung (GW) ist im dargestellten Zeitraum von 2000 bis 2017 laufend stark gestiegen: von anfangs 12,8 auf zuletzt 178,1. Top10 (GW): 〈DE 56,1 ES 23,2 GB 18,9 FR 13,8 IT 9,5 TR 6,9 SE 6,7 PL 6,4 DK 5,5 PT 5,3〉 . Die Top3|5|10-Staaten umfassen 55|68|86 % der Gesamtleistung. Bis 2020 sollen Erneuerbare Energien 1/5 des Energiebedarfs der EU decken, der Anteil des Ökostroms soll sogar auf 33 bis 40% steigen. Dazu sollen auch die Windkraft an Land (onshore) und auf See (offshore) samt der Stromnetze stark ausgebaut werden. In Deutschland deckt die Windenergie 21% des jährlichen Strombedarfs, in Dänemark (Spitzenreiter in Europa) sind es sogar 44%. Quelle: BWE, Windeurope | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Photovoltaik Welt 2017 13.07.18 (1141) |
dpa-Globus 12578: Solarenergie weltweit Bei der Photovoltaik (PV) ist die weltweit installierte Leistung (GW) von 2007|8 kontinuierlich gestiegen auf zuletzt 2017|402, darunter die Top5 Länder (GW): [,|staat; CN 131, US 51, JP 49, DE 42, IT 20] . Mit 99 GW war der PV-Zubau im letzten Jahr am größten. Die Top5 Länder beim Zubau [,|staat; CN, US, IN, JP, TR] hatten daran einen Anteil von zusammen knapp 84 %. Quelle: REN21 Infografik-Bezug Tabelle/ Infos
|
|||||||||||||||||||||||||||||||||||||
Ökostrom-Anteil DE 2017 01.06.18 (1114) |
dpa-Globus 12502: Strom aus erneuerbaren Energien Der Anteil des Ökostroms an der Brutto*-Stromerzeugung in Deutschland (in %) ist von 1992|3,8 laufend gestiegen auf zuletzt 2017|33,3, die sich so verteilen: Windenergie 16,2%; Biomasse 6,9; Sonnenenergie 6,1; Wasserkraft 3,1; Müll 0,9. Gemäß Ziel der Bundesregierung soll der Ökostromanteil bis 2050 auf 80 % gesteigert werden. * incl. Eigenverbrauch der Kraftwerke (5% AKW bis 10% Kohlekraftwerk) Quelle: AGEB Infografik-Bezug Tabelle/ Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Wohnenergie DE 2016 09.03.18 (1052) |
dpa-Globus 12330: Energie fürs Wohnen Im Jahr 2016 verbrauchten die privaten Haushalte insgesamt 665 TWh Endenergie (EEV) fürs Wohnen, darunter: Energieart: Gas 40%; Öl 19; Strom 19; Erneuerbare Energien 14; Fernwärme 7; Kohle 1. Energiezweck: Heizen 70; Warmwasser 14; Kommunikation u. Unterhaltung u.a. 8; Kochen, Waschen u.a. 6; Beleuchtung 2. Der durchschnittliche Endenergieverbrauch pro Haushalt1 2016 betrug 16.245 kWh. Gas bleibt mit 40% der mit Abstand wichtigste Energieträger der privaten Haushalte. Von 2010 bis 2016 sank der Anteil von Öl|Kohle um 11,7|38,3%. Der EE-Anteil stieg von 11,4 auf 13,5%, noch weit entfernt vom Klimaziel der Bundesregierung: bis 2030 mindestens 30% EE-Anteil am Brutto2-EEV 1 ohne Mobilität und externe Effekte (u.a. Energieproduktion u.-verteilung, Entsorgung → Lebenszyklusanalyse) 2 incl. Eigenverbrauch der Anlagen zur Strom- u. Wärmeerzeugung sowie Transport- u. Leitungsverluste durch Verteilung u. Übertragung (s. AGEB) Quelle: Statistisches Bundesamt | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Ökostrommix DE-1995-2017 12.01.18 (1021) |
dpa-Globus 12226: Strom aus Sonne, Wind und Wasser Die Ökostrommenge ist kontinuierlich von 1995|25,1 TWh auf 2017|216,6 TWh gestiegen, die sich so auf die Energiearten verteilen: Onshore-Windkraft 87,2 TWh; Offshore-Winkraft 18,3; Wasserkraft 19,7; Biomasse 45,5; Photovoltaik 39,8; Hausmüll 6 TWh. Die erneuerbaren Energien waren 2017 mit einem Anteil von 33,1 % an der Bruttostromerzeugung zum ersten Mal die Hauptstromquelle, gefolgt von Braunkohle (22,6 %) und Steinkohle (14,4 %). Quelle: BdEW Infografik-Bezug Tabelle/ Infos
|
|||||||||||||||||||||||||||||||||||||
Strompreise EU28 2017 08.12.17 (998) |
dpa-Globus 12155: Was kostet der Strom? Die Infografik listet die Stromkosten* in den 28 EU-Staaten im 1.Halbjahr 2017. Die Rangfolge beginnt mit [DK 3,05 €; DE 3,05; BE 2,80; IE 2,31] und endet mit [RO 1,20 €; HU 1,13; LT 1,12; BG 0,96] . Noch stärker als die Stromkosten variiert der Anteil der Steuern + Abgaben + Umlagen: von [DK 67 %; DE 54; PT 52; SK 42] bis [CZ 18 %; BG 17; HR 15; MT 5] Im Durchschnitt der EU28 sank der Strompreis** im 1. Halbjahr 2017 um 0,5 % im Vergleich zum 1. Halbjahr 2015 auf 20,40 Ct/kWh. Die Spanne reicht von + 22 % in CY bis - 11 % in IT (DE +2,7 %). * 10-Watt-Glühbirne jeden Tag 3 Stunden lang: 10W•3h •365 = 10,95 kWh ** Stromkosten bei Haushalten mit 2500 bis 5000 kWh /Jahr Quelle: Eurostat Infografik-Bezug Tabelle/ Infos xlsx-Tabelle
|
|||||||||||||||||||||||||||||||||||||
Erneuerbare Energien DE-1996-2016 06.10.17 (972) |
dpa-Globus 12027: Erneuerbare Energien Beim Klimagipfel in Paris 2015 hat die Völkergemeinschaft beschlossen, dass die globale Erwärmung auf 2°C, möglichst sogar auf 1,5°C eingebremst wird. Deshalb hat sich die Bundesregierung ehrgeizige Ziele gesetzt: der EE-Anteil am gesamten Energieverbrauch soll bis 2025|2050 auf mindestens 40 %|80 % gesteigert werden. Zwar ist der EE-Anteil in den letzten 20 Jahren deutlich gewachsen: 1996|1,8 %; 2006|6,3 %; 2016|12,6 %. Wenn der EE-Ausbau aber so langsam weitergeht wie seit 2006 (Verdopplung in 10 Jahren), dann werden 2025 nur ca. 25 statt 40 % geschafft. Im Sektor Verkehr sank der EE-Anteil sogar seit 2006 von 6,5 % auf 5,1 %. Auch der Sektor Wärme/Kälte wächst viel zu langsam: 2016 nur 13,4 %. Der Stromsektor dagegen ist mit 2016|31,7 % auf einem guten Pfad . Quelle: Bundeswirtschaftsministerium | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Solarstrom DE-2000-2016 29.09.17 (957) |
dpa-Globus 12004: Strom aus Sonnenenergie Die jährlich neu installierte Photovoltaikleistung (in Megawatt-peak (MWp)) stieg von 2000|45 auf das Allzeithoch 2012|7600 und brach dann dramatisch ein auf zuletzt 2016|1530, weil die Bundesregierung die Solarstromförderung stark kürzte. Die Solarstrommenge (TWh) stieg von 2000|0,064 auf das Allzeithoch 2015|38,7 und sank zuletzt etwas auf 2016|38,3, das sind 6,4 % vom Stromverbrauch im Inland (594,7 TWh). Laut BSW-Statistikpapier wurden im Jahr 2016 durch den Solarstrom rund 24 Millionen Tonnen (Mt) des Treibhausgases Kohlendioxid (CO2) eingespart. Quelle: Bundesverband Solarwirtschaft (BS) Infografik-Großansicht
|
|||||||||||||||||||||||||||||||||||||
Wohnenergie DE 2015 26.05.17 (928) |
dpa-Globus 11755: Energie fürs Wohnen Im Jahr 2015 verbrauchte ein durchschnittlicher privater Haushalt in Deutschland 16.073 Kilowattstunden (kWh) Energie*, darunter (Anteil in %): Gas 39; Strom 20; Mineralöl 20; Erneuerbare Energien (Biomasse, Solarthermie u.a.) 14; Fernwärme 8. Bei den Anwendungen der Energie (Anteil in %) dominiert mit weitem Abstand Heizen 70, gefolgt von Warmwasser 13, Kommunikation/Unterhaltung 9, Kochen/Waschen u.a. 6, Beleuchtung 2. * Ergänzung (zgh): ohne Energie für Mobilität (PKW, ÖPNV, Flugzeug): Sie würde auf Platz 1 oder 2 rangieren (s. Rechnung: Tabelle/ Infos) Quelle: Statistisches Bundesamt Infografik-Bezug | Serie
|
|||||||||||||||||||||||||||||||||||||
Strommix DE 1990-2016 28.04.17 (911) |
dpa-Globus 11708: Strommix - früher und heute In den Jahren 1990|2016 wurden insgesamt rund 550|648 TWh Strom erzeugt. Der Vergleich des Stommixes der Jahre 1990|2016 zeigt eine deutliche Verschiebung weg von den tradionellen Energiequellen (Anteile in %: Braunkohle 31,1|23,1; Kernenergie 27,7|13,1; Steinkohle 25,6|17,2; Mineralöl 2,0|0,9) hin zu den erneuerbaren Energien 3,6|29,0 und zu Erdgas 6,5|12,4, das als Übergangsenergie zu den erneuerbaren Energien gilt. Diese rangieren inzwischen auf Platz 1, allerdings gefolgt von der besonders klimaschädlichen Braunkohle. Die Atomstrommenge hat sich von 1990 bis 2016 etwas mehr als halbiert auf 84,6 TWh (13,1 % der Bruttostromerzeugung). Ergänzung (zgh): Durch den Atomausstieg werden die aktuell noch betriebenen 8 Atomkraftwerke schrittweise bis 2022 vom Netz genommen. Damit die Versorgungs-sicherheit gewährleistet bleibt und kein Stromausfall im großen Ausmaß (Blackout) entsteht, müssen parallel im Zuge einer forcierten Energiewende a) die Erneuerbaren Energien und b) großvolumige Stromspeicher sowie c) Stromtrassen und d) die intelligente Vernetzung von Stromerzeugern - und verbrauchern (smart grid) ausgebaut werden. Wegen b) kommt noch e) die Umwandlung von Strom in Wasserstoff und/ oder Methan (Power to Gas) hinzu. In allen fünf Bereichen liegt die Entwicklung stark hinter den Erfordernissen zurück. Dadurch wächst das Risiko, dass der Atomausstieg ein 3.Mal revidiert wird (doppelte Merkel-Wende in der Energiepolitik 2010/2011), oder dass vermehrt Kohlestrom den rückgängigen Atomstrom ersetzt, was aktuell in Phasen passiert, wo das Ökostromaufkommen nicht ausreicht (z.B. wg. Dunkelflaute) oder nicht weiträumig genug verteilt werden kann (z.B. wg. unzureichendem Netzausbau). Dies ist mit eine Ursache dafür, dass der CO2-Ausstoß Deutschlands 2016 wieder gestiegen ist. Quelle: AG Energiebilanzen Infografik-Bezug Tabelle/ Infos
|
|||||||||||||||||||||||||||||||||||||
Windenergie DE 2000-2016 10.03.17 (884) |
dpa-Globus 11610: Windenergie in Deutschland Die Windkraft-Leistung in Gigawatt (GW) stieg von 2000|6,095 GW kontinuierlich an auf 2016|50,001 GW. 2016 wurden 80 TWh Windstrom erzeugt, 12,3 % des Bruttostroms. Ende 2016 waren in Deutschland 28.000 Windkraftanlagen (WKA) installiert. Bei den Bundesländern bzw. der Nord-/Ostsee beginnt die Liste mit [NI 5925; BB 3633; NW 3339; SH 3336; ST 2794] und endet mit [SL 149; Ostsee 101; HB 87; HH 51; BE 5]. Die Top4 Länder stellen bereits 58 % der WKA. Quelle: DEWI Infografik-Bezug Tabelle/ Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Stromrechnung DE 2000-2017 10.03.17 (881) |
dpa-Globus 11598: Die Stromrechnung Die durchschnittlichen monatlichen Stromkosten eines Drei-Personen-Haushaltes (3500 kWh/Jahr ) in Euro sind von 2000|40,66 kontiunierlich (Ausnahme: 2015) auf 2017|85,07 gestiegen. 2017 setzen sich die Stromkosten so zusammen: Transport 21,82; EEG-Umlage 20,07; Erzeugung, Vertrieb 16,42; Mehrwertsteuer 13,59; Stromsteuer 5,98; Konzessionsabgabe 4,84; Sonstiges*2,35. Dass die EEG-Umlage so groß ist, beruht vor allem auf einer falschen Finanzierung der Energiewende: als gesamtgesellschaftliche Aufgabe hätte sie durch das Steueraufkommen des Staates erfolgen sollen. Stattdessen wurden über eine EEG-Umlage nur die Stromverbraucher herangezogen, zudem nur die Verbraucher mit kleinem bis mittlerem Stromverbrauch, während ein beträchtlicher Teil der Großverbraucher durch Sonderregelungen von der Umlage befreit blieb. * Offshore-Haftungsumlage, Umlage für abschaltbare Lasten sowie Abgaben nach der Stromnetzentgelt-Verordnung und dem Kraftwärmekopplungsgesetz Quelle: BdEW Infografik-Großansicht Tabelle/ Infos
|
|||||||||||||||||||||||||||||||||||||
Windenergie Welt 2001-2016 02.03.17 (880) |
dpa-Globus 11596: Windenergie weltweit Die weltweit installierte Windkraft in Gigawatt (GW) ist kontinuierlich von 2001|24 auf 2016|487 gestiegen. Die Top10 Länder bei der installierten Leistung im Jahr 2016 waren: CN 169; US 82; DE 50; IN 29; ES 23; GB 15; FR 12; CA ; BR 11; IT 9. Besonders stark war der Zubau von Windkraft in China (2015|+30, 2016|+23), um die Abhängigkeit von Kohle zu verringern. Auf Rang 2 bzw. 3 beim Zubau 2016 lagen die USA (+ 8) bzw. Deutschland (+5). Quelle: GWEC | Infografik | Tabelle/Infos | Serie | Zeitreihe
|
|||||||||||||||||||||||||||||||||||||
Energiemix-DE-2016 06.01.17 (855) |
dpa-Globus 11478: Deutschlands Energiemix 2016 Nach ersten Berechnungen ist der Primärenergieverbrauch (PEV) 2016 um 1, 6% im Vergleich zum Vorjahr auf 13.427 PJ (= 3.7230 TWh = 458 MtSKE *) gestiegen, die sich so auf verteilen (in %): Mineralöl 34,0; Erdgas 22,7; Erneuerbare Energien 12,6; Steinkohle 12,2; Braunkohle 11,4; Kernenergie 6,9; sonstige (incl. Strom-Außenhandel) 0,3 . * 1 TWh = 3,6 PJ 1 MtSKE = 29,3076 PJ Quelle: AGEB | Infografik | Tabelle/Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Solarstromländer Welt-2014 25.08.16 (808) |
dpa-Globus 11206: Die Top Ten beim Solarstrom Top10 bei der insgesamt installierten Leistung (in GWp*): DE 38,2; CN 28,1; JP 23,3; IT 18,5; US 18,3; FR 5,6; GB 5,2; ES 4,8; AU 4,1; BE 3,1. Top10 bei der neu installierten Leistung (in GWp*): CN 10,6; JP 9,7; US 6,2; GB 2,3; DE 1,9; FR 0,9; AU 0,9; KR 0,9; ZA 0,8; IN 0,6. In Deutschland ist die neu installierte Leistung in den letzten Jahren durch Änderungen im EEG (u.a. Kürzung der Einspeisevergütungen; Ausschreibung bei großen Anlagen) stark gesunken: von in der Spitze 7,6 GWp* (2012) auf 1,5 (2015). 2016 wird sie voraussichtlich weiter sinken auf 1,0. * Gigawatt-Peak: maximal mögliche Photovoltaik-Leistung Quelle: Bundesverband Solarwirtschaft Infografik-Bezug Tabelle/ Infos
|
|||||||||||||||||||||||||||||||||||||
Solarstrom-DE-2015 18.08.16 (794) |
dpa-Globus 11198: Strom aus Sonnenenergie Ende 2015 waren in Deutschland 1,53 Millionen Solaranlagen mit einer Leistung von zusammen 39.700 Megawattpeak* (MWp) installiert. Die jährlich neu installierte Leistung (MWp) stieg von 45 im Jahr 2000 steil an auf das Allzeithoch 7600 im Jahr 2012. Danach fiel sie stark ab auf 1460 im Jahr 2015. Der von Solaranlagen erzeugte Strom stieg von 64 Gigawattstunden (GWh) 2000 auf 38.000 GWh 2015 (6 % der Bruttostromerzeugung). Zuletzt wurden durch Solarstrom 26 Millionen Tonnen des Treibhausgases Kohlendioxid (CO2) eingespart. * maximal mögliche Leistung Quelle: Bundesverband Solarwirtschaft Infografik-Großansicht
|
|||||||||||||||||||||||||||||||||||||
Solarstromleistung Welt-2015 05.08.16 (790) |
dpa-Globus 11168: Solarstromleistung im Ländervergleich Vergleich von 12 ausgewählten Ländern weltweit bei der installierten Gesamtleistung von Photovoltaikanlagen in Kilowattpeak (kWp) je 1000 Einwohner: DE 487; IT 312; BE 287; JP 276; GR 245; AU 212; CZ 203; GB 139; ES 116; FR 99; US 87; CN 31. Insgesamt sind 230 Gigawatt (GW) Solarstromleistung installiert. CN liegt mit 43 GW auf Rang 1, gefolgt von DE mit 40 GW, die 6 % des Stroms erzeugen. 2016 werden weltweit ca. 65 GW hinzugebaut, das meiste in CN, US und JP. In DE wird der frühere starke Ausbau durch Änderungen im EEG (u.a. Reduzierung der Einspeisevergütung, Ausschreibung für Großanlagen ab 1.9.15) gebremst. PV-Zubau in DE (GW): 2012|7,6; 2013|3,3; 2014|1,9; 2015|1,5; 2016|1,0. Quelle: Bundesverband Solarwirtschaft Infografik-Bezug Tabelle/ Infos
|
|||||||||||||||||||||||||||||||||||||
Ökostrom-DE-2015 17.06.16 (766) |
dpa-Globus 11073: Strom aus erneuerbaren Energien Der Anteil der Erneuerbaren Energien (EE) an der Bruttostromerzeugung in Deutschland ist von 1991 bis 2015 kontinuierlich gestiegen von 3,2 % auf 30,1 %, die sich wie folgt auf die Energieträger verteilen: Windenergie 13,5; Biomasse 6,8; Sonnenenergie 5,9; Wasserkraft 3,0; Müll 0,9. Ziel der Bundesregierung ist, den EE-Anteil an der Stromerzeugung bis zum Jahr 2050 auf 80 % zu steigern. Quelle: AGEB Infografik-Bezug Tabelle/ Infos | Serie
|
|||||||||||||||||||||||||||||||||||||
Metropolen Stromquellen 2015 01.10.15 (678) |
dpa-Globus 10560: Metropolen und ihr Strom Für 13 aus insgesamt 133 dokumentierten Städten weltweit listet die Grafik den Anteil von fossilen, atomaren und regenerativen Stromquellen . Vor allem in Lateinamerika (76 %, besonders Brasilien) und Europa beziehen viele Städte ihren Strom aus Erneuerbaren Energien (EE). Weltweit decken 20 dokumentierte Großstädte ihren Strom komplett aus Ökostrom, andere ersetzen fossile Quellen durch Kernkraft, z.B. Zürich mit 25 % Atomenergie. Im asiatisch-pazifischen Raum beziehen die erfassten Städte zu 15 % ihren Strom aus nicht-fossilen Quellen. Es gibt aber immer noch Städte mit Strom nur aus fossiler Energie, z.B. Mexico City, Sydney, Vitoria (Brasilien). Quelle: AECOM, CDP | Infografik | Tabelle/Infos | Kontext
|
|||||||||||||||||||||||||||||||||||||
Kohleverstromung 01.10.15 (602) |
ZEIT-Infografik: Comeback eines Fossils Kohle als Stromlieferant erlebt eine Renaissance: Sie ist der billigste Brennstoff, aber auch der klimaschädlichste. Daher dürfen von den insgesamt 892 Gt Kohle-Reserven nur noch 100 Gt verbrannt werden, falls das 2°C-Ziel erreicht werden soll. Weitere Aspekte der Infografik: CO2-Ausstoß durch Kohleverbrennung: Anstieg von 1980|6,6 Gt auf 2012|13,1 Gt; Anteile der Energieträger an den weltweiten CO2-Emissionen; Kohlereserven (in Gt), Top10-Länder: US 237, RU 157, CN 115, AU 76, IN 61, DE 41, UA 34, KZ 34, ZA 30, ID 26. Preis für 1 MWh Strom: US-Kohle: 6-23 €; DE-Solar: 85-123 €. Statische Reichweite (Jahre) der Reserven: u.a. RU 441, US 262, DE 218, CN 30. In China wurde 2011 im Schnitt alle 5 Tage ein neues Kohlekraftwerk mit 1000 MW Leistung in Betrieb genommen. (Quellen: IEA, EIA, BP, IPCC, World Coal Association) Die Grafik ist abgedruckt auf Seite 30 [ZEIT Nr.40/ 01.10.15]
|
|||||||||||||||||||||||||||||||||||||
Atomkraftwerke Welt 2014 25.09.15 (606) |
dpa-Globus 10536: Atomkraft weltweit Nach dem Super-GAU in Fukushima im März 2011 wurden alle 48 Kernreaktoren in Japan abgeschaltet. Im August 2015 wurde der erste wieder in Betrieb genommen, weitere sollen folgen, trotz großer Proteste der Bevölkerung. Vor diesem Hintergrund zeigt die Weltkarte die 30 Staaten mit Kernreaktoren im Jahr 2014: in Betrieb waren 390*, darunter die Top10*: US 99, FR 58, RU 34, CN 23, KR 23, IN 21, CA 19, GB 16, SE 10, DE 9. Die Staaten sind gemäß des Atomstrom-Anteils an der Bruttostromerzeugung (in %) eingefärbt: > 50: FR 77, SK 57, HU 54. > 20: UA 49, BE 48, SE 42, CH 38, SI 37, CZ 36, FI 35, BG 32, AM 31, KR 30, ZA 20, ES 20 (alle Staaten: s.Quelle) * ohne die 2014 stillgelegten 48 Reaktoren in Japan Quelle: Internationale Atomenergiebehörde (IAEA) | Infografik | Serie
|
|||||||||||||||||||||||||||||||||||||
Solarstrom DE-2000-2014 14.08.15 (688) |
dpa-Globus 10460: Energie von der Sonne Die jährlich in Deutschland neu installierte Leistung (in Megawattpeak (MWp)) stieg von 45 im Jahr 2000 auf ein Maximum von 7600 im Jahr 2012. Danach sank sie jedes Jahr auf 1900 im Jahr 2014. Hauptgrund dafür ist die weitere Kürzung der Subventionen für Strom aus Photovoltaik-Anlagen, insbesondere die Einspeisevergütung. Der von Solaranlagen jährlich erzeugte Strom (in Gigawattstunden (GWh)) stieg von 64 im Jahr 2000 auf 35.200 (entspricht dem Strombedarf von 10 Mio Haushalten) im Jahr 2014. Der gesamte Stomverbrauch 2014 betrug 614.000 GWh, der Anteil des Solarstroms beträgt also 5,7 %. Im Juli 2015 erzeugten die Solaranlagen erstmals soviel Strom wie die Atomkraftwerke (5180 GWh) Quelle: Bundesverband Solarwirtschaft Infografik-Bezug Tabelle [htm]
|
|||||||||||||||||||||||||||||||||||||
Kohleförderung Kohlestrom DE-1990-2014 02.07.15 (680) |
dpa-Globus 10376: Kohle in Deutschland 1990 bis 2014 Bei der Steinkohle fielen Fördermenge (Mt) | Anteil an der Stromerzeugung (%) kontinuierlich von 356,5|25,6 im Jahr 1990 auf 7,6|17,8 im Jahr 2014. Der Rückgang der Eigenförderung wurde durch eine Verdopplung des Steinkohleimports kompensiert. Bei der Braunkohle fiel zunächst die Förderung von 366 Mt 1990 auf 168 Mt 2000. Danach stieg sie wieder langsam auf zuletzt 178 Mt. Der Anteil an der Stromerzeung fiel zunächst von 31,1 % (1990) auf 23,0 % (2010) und stieg dann wieder leicht auf zuletzt 25,4 % in Folge des Abschaltens von Atomkraftwerken nach der Atomkatastrophe in Fukushima. Quellen: Kohlestatistik AGEB Infografik-Bezug Tabelle/Infos
|
|||||||||||||||||||||||||||||||||||||
Wohnenergie DE 2013 20.11.14 (508) |
dpa-Globus 6776: Energie fürs Wohnen Der jährliche Energieverbrauch pro Haushalt (in kWh) ist von 17863 im Jahr 2005 auf 16424 in 2012 gesunken. Dann stieg er auf 16973 im Jahr 2013. Alle Haushalte zusammen verbrauchten 2013 679 TWh Energie, 3,9 % mehr als 2012. Der Verbrauch stieg bei allen Energiezwecken, beim Heizen mit 4,6 % besonders stark. Anteile im Jahr 2013 in %: Energieträger: Gas 42, Strom 20, Öl 18, EE 12, Fernwärme 7, Kohle1. Energiezwecke: Heizung 70, Warmwasser 13, Haushaltsgeräte 9, Kochen/ Waschen u.a. 6, Beleuchtung 2. Quelle: Statistisches Bundesamt Großansicht der Infografik: Bezug | Serie
|
|||||||||||||||||||||||||||||||||||||
Wohungsheizung 06.11.14 (540) |
dpa-Globus 6751: So werden die Wohnungen warm Anteil der Heizungsarten in bestehenden Wohnungen (40,8 Mio.) im Jahr 2013 bzw. in Neubauten im 1. Halbjahr 2014 (in %): Erdgas 49,2 % | 49,4 %; Heizöl 28,8|0,7; Fernwärme 12,9|20,1; Strom 5,3|0,5; Holz, Holzpellets, Kohle etc. 3,0|6,8; Sonstige (incl. Biogas): 0|2,1 Quelle: Bundesverband der Energie- und Wasserwirtschaft Infografik: Großansicht: Bezug | Serie
|
|||||||||||||||||||||||||||||||||||||
Strompreis 2000-2014 16.10.14 (506) |
dpa-Globus 6705: Entwicklung des Strompreises Bei privaten Haushalten stieg der Strompreis in jedem Jahr an, von 100 % im Jahr 2000 auf 194 % in 2014. Dagegen kletterte der Preis für Strom insgesamt (über alle Abnehmergruppen hinweg) zunächst auf ein Allzeithoch von 176 % im Jahr 2008 und fiel seitdem unter Schwankungen auf zuletzt 149 %. Mit 19 % war die Preissteigerung in den 14 Jahren bei den Weiterverteilern (u.a. Stadtwerke und Versorger) am geringsten. Bei kleineren Gewerbebetrieben bzw. industriellen Großabnehmern betrug er 87 bzw. 86 %. Quelle: Statistisches Bundesamt Großansicht der Infografik: Bezug
|
|||||||||||||||||||||||||||||||||||||
Treibhausgase-DE 27.03.14 (490) |
dpa-Globus 6304: Treibhausgase aus Deutschland Von 1990 bis 2011 sank der Treibhausgas (THG)-Ausstoß Deutschlands (in MtCO2e) von 1248 auf 929. Entgegen diesem langjährigenTrend stieg er seitdem wieder: 2012 auf 949, 2013 auf 951, vor allem, weil mehr Steinkohle verstromt wurde. Hauptursachen dafür sind der Preisverfall der CO2-Zertifkate im Emissionshandel und ein deutlicher Rückgang beim Kohlepreis, verursacht durch die Öl- und Gasschwemme in den USA infolge von Fracking. Laut Klimaschutzziel der Bundesregierung soll der THG-Aussstoß bis 2020 um 40 % im Vergleich zu 1990 gesenkt werden. Da die bisher geschafften 24 % zu einem erheblichen Teil aus dem Zusammenbruch der ehemaligen DDR resultieren, muss drastisch mehr als bisher getan werden bei der Energiewende (mehr Energieeffizienz, weiterer Ausbau der erneuerbaren Energien in Kombination mit Netzumbau/ -neubau und Stromspeichern sowie der nachhaltigen Mobilität). Datenquelle: UBA => Großansicht der Infografik: Bezug | Serie
|
|||||||||||||||||||||||||||||||||||||
Umweltkosten 12.12.13 (488) |
dpa-Globus 6099: Umweltkosten der Stromerzeugung Die Umweltkosten umfassen u.a. die Schäden durch Emissionen (Treibhausgase, Luftschadstoffe) und dadurch verursachte Gesundheitsschäden, in ct/kWh: Braunkohle 10,75; Steinkohle 8,94; Erdöl 8,06; Erdgas 4,91; Biomasse 3,84; Photovoltaik 1,18; Windenergie 0,26; Wasserkraft 0,18. Durch den Ausbau der erneuerbarer Energien werden enorme Kosten für Umwelt und Gesundheit vermieden: 8 G€ im Jahr 2011. Datenstand: 2012; Datenquelle: UBA Großansicht der Infografik: Galerie Bezug
|
|||||||||||||||||||||||||||||||||||||
Kohle-Gesundheit 13.03.13 (475) |
FR-Infografik: Gesundheitskosten durch Abgase aus Kohleverstromung Die Abgase und der Feinstaub aus der Verbrennung von Kohle in Kraftwerken verursachen vielfältige Gesundheitsschäden, u.a. Atemwegserkrankungen (Asthma, Bronchitis), Herz-Kreislauf-System (Herzinfarkt) und Krebs. Dadurch ausgelöste vorzeitige Todesfälle, medizinische Behandlung und ausgefallene Arbeitszeit verursachen Kosten von EU-weit 42,8 Milliarden Euro pro Jahr. Am stärksten betroffen sind Länder mit hohem Anteil von Kohlestrom. Die Tabelle listet ausgewählte Länder mit ihren jährlichen Gesundheitskosten durch Kohleverstromung in Mrd.€: Polen 8,3; Rumänien 6,4; Deutschland 6,4; Bulgarien 4,6; Griechenland 4,1; Großbritannien 3,7; Tschechien 2,8; Frankreich 1,9; Slowakei 0,9; Italien 0,8. Die Grafik ist abgedruckt im Artikel: Ganz schön viel Kohle [FR 13.03.13,S.17]
|
|||||||||||||||||||||||||||||||||||||
Wohnenergie DE 2010 13.12.12 (441) |
dpa-Globus 5394: Energie fürs Wohnen Der Energieverbrauch in Deutschland je Haushalt (temperaturbereinigt, in kWh) sank von 20135 (Gas 7781, Öl 6112, Strom 3505, Fernwärme 1042, Kohle 384) im Jahr 2000 um 20,2 % auf 16072 in 2010 (Gas 6075, Öl 3411, Strom 3437, Fernwärme 1096, Kohle 291). 2010 verteilt sich der Energieverbrauch der Haushalte wie folgt auf die Anwendungsbereiche (in %): Raumwärme 71, Warmwasser 13, Elektrogeräte 9, sonstige Prozesswärme (z.B. Kochen, Warmwasser für Geschirrspüler) 6, Beleuchtung 2. Der mit 71 % (11411 kWh) herausragende Anteil der Raumwärme zeigt, wie wichtig die energetische Sanierung der Gebäude für die Energiewende im Wärmebereich ist. Bei Neubauten senkt die Passivhaus-Bauweise den Raumwärmebedarf auf unter 15 kWh/m², ein Plusenergie-Haus produziert netto sogar noch Energie. => Großansicht: Bezug Großansicht: Galerie | Serie
|
|||||||||||||||||||||||||||||||||||||
Stromrechnung 06.12.12 (439) |
dpa-Globus 5372: Die Stromrechnung Die Kurve zeigt die Entwicklung des durchschnittlichen monatlichen Strompreises eines Drei-Personenhaushalts (Jahresverbrauch 3500 kWh) vom Jahr 2000 bis 2012: Er stieg kontiunierlich von anfangs 40,66 € auf zuletzt 75,51 €, die sich wie folgt verteilen (in €; in Klammern Veränderung gegenüber 2000 in %): Erzeugung, Transport, Vertrieb 41,33 (+64,4 %); Mehrwertsteuer 12,05 (+115,1); EEG-Umlage (+1696); Stromsteuer 5,98 (+60,2); Konzessionsabgabe 5,22 (0 %); §19-StromNEV-Umlage 0,44 (seit 2012); KWK-Umlage 0,01 (- 98,5). => Großansicht: Bezug Großansicht: Galerie
|
|||||||||||||||||||||||||||||||||||||
Stromkabel-NorGer 05.12.12 (437) |
FR-Grafik: Untersee-Stromkabel "NorGer" Am 4.12.12 vereinbarten die Netzbetreiber Statnett (Norwegen) und Tennet (Deutschland), ein neues Stromkabel namens "NorGer" von Norwegen durch die Nordsee nach Deutschland zu verlegen. Ab 2018 soll das Kabel überschüssigen Ökostrom von Deutschland per HGÜ mit einer Kapazität von 1,4 GW zu den Pumpspeichern Norwegens transportieren. Umgekehrt wird bei Strommangel in Deutschland wieder Strom aus den Speichern in Norwegen abgerufen. Eine Vollversorgung Deutschlands mit Ökostrom erfordert ca. 70 GW an Stromspeicherung, also das 50-Fache von NorGer. Die Grafik ist abgedruckt im Artikel: Nordsee unter Strom [FR 05.12.12, S. 18]
|
|||||||||||||||||||||||||||||||||||||
Strompreisbestandteile 15.11.12 (431) |
FR-Grafik: Strompreisbestandteile Laut Vergleichsportal Verivox haben mindestens 238 von knapp 1000 Stromversorgern in Deutschland Preiserhöhungen im Durchschnitt um 11,6 % ab dem 1.1.13 angekündigt, z.B. Ökostrom-Anbieter Lichtblick von 24,19 auf 27,48 ct/kWh (+13,6 %). Die Versorger begründen diese drastische Erhöhung mit dem Weiterreichen folgender Mehrkosten in ct/kWh: EEG-Umlage 2,00; KWK-Umlage 0,15; Netzkosten 1,14; zusammen 3,29 (= 13 % von 25,31). Für 2013 wird ein Durchschnittspreis für Privatverbraucher von insgesamt 28,17 ct/kWh prognostiziert, der sich so aufteilt: Stromerzeugung/-vertrieb 7,55 + Netzkosten 6,52 = 14,07 (49,9 %). Hinzu kommen folgende vom Staat bestimmte Kosten: EEG-Umlage 5,28 + Mehrwertsteuer 4,50 + Stromsteuer 2,05 + Konzessionsabgabe an Gemeinden 1,69 + Netzkostenbefreiung energieintensiver Industrien 0,33 + Haftung für Offshore-Windanlagen 0,25 = 14,10 (50,1 %). Die Grafik ist abgedruckt im Artikel: Strompreise steigen um 12 Prozent [FR 15.11.12]
|
|||||||||||||||||||||||||||||||||||||
Strompreis-DE 26.10.12 (422) |
FR-Grafik: Strompreisanstieg Stromkosten eines Haushalts mit 4000 kWh Jahresverbrauch in Euro: Die Stromkosten stiegen von rund 700 im Jahr 2004 auf 997 in 2012, bis 2013 werden sie voraussichtlich auf 1126 steigen. Die beiden Hauptgründe für den starken Anstieg sind a) die schlechte Gestaltung der Energiewende (u.a. nicht nachhaltige Photovoltaik) und b) ihre ungeeignete Finanzierung: statt gesamtgesellschaflich (z.B. über Steuern und Abgaben) durch Umlage auf Stromverbraucher mit kleinem bis mittlerem Stromverbrauch während stromintensive Unternehmen weitestgehend befreit sind. Dadurch werden Privathaushalte stark überproportional belastet durch Erhöhungen bei der EEG-Umlage von 3,59 auf 5,28 Ct/kWh und bei den Netzentgelten um 0,392 Ct/kWh. Hinzu kommt die Einführung einer Off-Shore-Haftung von voraussichtlich 0,3 Ct/kWh. Die Grafik ist eingelinkt im Artikel: Strompreise steigen um 13 Prozent [FR 26.10.12]
|
|||||||||||||||||||||||||||||||||||||
Ökostromumlage 11.09.12 (418) |
FR-Grafik: Verteilung der Ökostrom-Umlage Die Förderung der Erneuerbaren Energien (EE) wird in Deutschland laut EEG nicht über Steuern sondern durch eine Umlage finanziert, die alle Stromkunden mit einem Verbrauch unter 10 GWh/Jahr) zu tragen haben, während Großverbraucher (stromintensive Industrie) nahezu völlig befreit sind. Im Jahr 2012 fallen insgesamt 3,592 Ct/kWh an, die sich wie folgt auf die EE-Arten verteilen (in %): Photovoltaik 56,2; Biomasse 25,3; Onshore|Offshore-Wind 13,5|1,1; Gase, Geothermie, Wasserkraft 1,2; sonstige 2,7. Besonders problematisch ist der hohe Aufwand für die Photovolatik (PV), weil einerseits der PV-Anteil an der Stromerzeugung (2011: 3,2 %) und an der gesicherten Leistung (1 %) extrem gering ist, während andererseits die Kosten mit ca. 10-20 Ct/kWh im Vergleich hoch sind. Die Grafik ist eingelinkt im Artikel: Ökostrom-Quote statt EEG [FR 11.09.12]
|
|||||||||||||||||||||||||||||||||||||
EEG-Umlage-Befreiung 31.08.12 (417) |
taz-Grafik: Firmen mit EEG-Umlage-Befreiung Insgesamt 734 energieintensive Firmen sind ganz oder teilweise von der EEG-Umlage befreit. Aufgrund der vorliegenden Anträge könnte ihre Zahl auf über 1000 steigen. In der Deutschlandkarte kann per Klick auf den Standort der jeweiligen Firma deren Adresse und Produktionsschwerpunkt abgerufen werden. Die Standorte sind in 10 Kategorien (Chemie, Bahnen, NE-Metalle, Papier, Eisen & Stahl, Zement, Holz, Metall, Ernährung, Energie, Sonstiges) eingeteilt, die per Auswahl gefiltert werden können. Durch die Befreiung fehlen im Jahr 2012 (2013) rund 2,5 (4) Mrd. Euro, die zusätzlich von den übrigen Stromkunden bezahlt werden müssen. Die EEG-Umlage wird voraussichtlich von derzeit 3,59 auf ca. 4,8 bis 5,3 Ct/kWh erhöht werden. Die Grafik ist eingelinkt im Artikel: Firmen ohne Ökoumlage [taz 31.08.12]
|
|||||||||||||||||||||||||||||||||||||
Biogasanlage 12.07.12 (428) |
dpa-Grafik: So funktioniert eine Biogas-Anlage Die Infografik erklärt schematisch die Funktionsweise einer Biogasanlage: Biomasse (u.a. Pflanzen, Kuhmist, Bioabfälle) wird im Fermenter von Mikroorganismen ohne Licht und Sauerstoff unter Zufuhr von Wärme abgebaut, wodurch Biogas (Methan und Kohlendioxid) entsteht. Nach entsprechender Aufbereitung kann das Gas in das Erdgasnetz eingespeist werden und als Kraftstoff für Erdgasautos dienen oder in einem Blockheizkraftwerk Strom und Wärme erzeugen. Die Biogas-Erzeugung ist stark in die Kritik geraten, weil ihre Förderung nach dem EEG in den letzten Jahren einen massiven Anstieg des Maisanbaus verursacht hat, wodurch Grünlandflächen in Deutschland dramatisch zurückgegangen sind: von 1990 bis 2009 um 875 000 Hektar. Dies schädigt das Klima, da Grünland mehr Kohlenstoffdioxid (CO2) dauerhaft bindet als Ackerland. Außerdem wird durch die Ausbreitung von Monokulturen der Lebensraum vieler Pflanzen- und Tierarten vernichtet. => Großansicht: Bezug Großansicht: Galerie
|
|||||||||||||||||||||||||||||||||||||
EE-Förderung 08.03.12 (394) |
dpa-Globus : Förderung erneuerbarer Energien Die rote Kurve zeigt den Anstieg des Ökostrom-Anteils von 3,6 % im Jahr 1990 auf 19,9 % im Jahr 2011. Der starke Anstieg liegt vor allem an der Förderung Erneuerbarer Energien (EE) nach dem EEG. Das Kreisdiagramm stellt die Verteilung der EEG-Umlage von insgesamt 3,59 Ct/kWh auf die EE-Arten dar (in Ct): Solaranlagen 1,86; Biomasseanlagen 0,84; Onshore-Windkraft 0,45; Offshore-Windkraft 0,04; Wasserkraft, Gas- und Geothermieanlagen: 0,04; Sonstige 0,37. Großansicht: Bezug Großansicht: Galerie
|
|||||||||||||||||||||||||||||||||||||
Strompreisentwicklung 09.01.12 (375) |
FR-Grafik: Strompreisentwicklung 2004 bis 2012 Die Grafik zeigt den Anstieg der Stromkosten anhand von 3 verschiedenen Tarifen für einen 4-Personen-Haushalt bei einem Jahresverbrauch von 4000 kWh in Euro, jeweils im Februar, Jahr 2004 | 2012 a) Grundversorgungstarif (obere rote Kurve): 718 | 1047 b) günstigster Tarif des örtlichen Versorgers (mittlere dunkelblaue Kurve): 688 | 954 c) günstigster verfügbarer Tarif ohne Vorkasse (untere hellblaue Kurve): 666 | 782 Rechenbeispiel: Die Stromkosten sind i.d.R. die Summe aus einer Grundgebühr (z.B. 84 €) und den Verbrauchskosten (z.B. 4000 kWh * 0,25 €/kWh): 84 € + 1000 € = 1084 €. Die Grafik ist abgedruckt im Artikel: Der verschaukelte Stromkunde [FR 09.01.12]
|
|||||||||||||||||||||||||||||||||||||
Erneuerbare Energien 17.11.11 (359) |
dpa-Globus : Erneuerbare Energie aus privater Hand Während die konventionelle Stromerzeugung aus fossilen Energien (Kohle, Erdöl, Erdgas) und aus Atomenergie in Deutschland zu rund 80 % durch das Oligopol aus den vier großen Energiekonzernen E.on, RWE, Vattenfall und EnBW dominiert wird, beträgt ihr Anteil an der installierten Leistung Erneuerbarer Energien (EE) nur 6,5 %, darunter vor allem Wasserkraftwerke. Die restlichen 93,5 % der insgesamt 53 GW entfallen auf (in %): Privatpersonen1 39,7, Projektierer2 14,4, Fonds/Banken 11,0, Landwirte 10,8, Gewerbe3 9,4, sonstige Energieversorger (u.a Stadtwerke) 7,0; Sonstige 1,2. Bei den Anteilen wurden Pumpspeicherkaftwerke nicht berücksichtigt 1 hauptsächlich Photovoltaik-Anlagen 2 Entwickler und Veräußerer von Projekten der Erneuerbaren Energien 3 inkl. Contracting
|
|||||||||||||||||||||||||||||||||||||
Offshore-Windkraft 17.11.11 (358) |
FR-Grafik: Windkraft-Projekte Deutschlands in Nord- und Ostsee In der Nord-(N) | Ostsee (O) sind die Standorte von insgesamt 37 Offshore-Windparks nach 3 Kategorien markiert und eingefärbt: in Betrieb (gelb): N3|O1; genehmigt (blau): N16|O5; geplant (rot): N9|O3. Insgesmat sind 72 GW Offshore-Windkraft in Betrieb, 2036 GW genehmigt und 25000 GW geplant. Der weitere Ausbau der Offshore-Windkraft wird aktuell massiv beeinträchtigt durch eklatanten Fachkräftemangel und unzureichende Kapaziäten bei Zulieferfirmen sowie Problemen bei der Finanzierung. Deshalb fordert u.a. dena-Chef Stephan Kohler eine Roadmap mit verbesserter Koordinierung aller Akteure und genauer Ablaufplanung. Die Grafik ist abgedruckt im Artikel: Ohne Anschluss [FR 17.11.11, S.14]
|
|||||||||||||||||||||||||||||||||||||
EEG-Umlage 16.11.11 (356) |
FR-Grafik: EEG-Umlage von 2003 bis 2013 Erneuerbare Energien werden nach dem EEG gefördert durch eine Umlage, die auf die Rechnung der Stromverbraucher aufgeschlagen wird, wobei allerdings energieintensive Industrien weitestgehend ausgenommen werden, um ihre Wettbewerbsfähigkeit zum Ausland zu stärken. Die EEG-Umlage stieg von 0,41 Ct/kWh im Jahr 2003 auf 3,53 Ct/kWh in 2011. Bis 2013 wird die Umlage nach Prognosen von Experten auf 3,66 bis 4,74 Ct/kWh anwachsen. Schuld an dem Anstieg sind neben teueren Techniken wie Photovolatik und Offshore-Windkraft vor allem die Lockerung von Kriterien für die Befreiung von der Umlage bei energieintensiven Unternehmen, deren Zahl dadurch von derzeit knapp 600 auf fast 7000 wachsen wird. Die Grafik ist abgedruckt im Artikel: Öko-Strom-Kosten steigen weiter [FR 16.11.11, S.12]
|
|||||||||||||||||||||||||||||||||||||
Kombinationskraftwerk 08.11.11 (352) |
FR-Grafik: Kombinationskraftwerk aus Windpark und Pumpspeicherkraftwerk Je größer die installierte Windkraft wird, desto wichtiger wird der Ausbau von großvolumigen Stromspeichern, die bei Windflaute Strom ins Netz einspeisen, der zuvor bei Windstrom-Überfluss eingespeichert wurde. Hierfür bieten sich ausgediente Bergwerke und Halden etwa im Ruhrgebiet an, wo 2018 die Kohleförderung ausläuft. Auf den zurückbleibenden Halden und Industriebrachen können Windparks errichtet werden. In ausgedienten Bergwerken werden Pumpspeicherkraftwerke errichtet, die den Windstrom puffern. Dazu werden oberirdisch z.B. ehemalige Tagebau-Gruben geflutet und als Speichersee genutzt. Durch Fallrohre im Förderschacht strömt das Wasser aus dem Speichersee auf Turbinen, die Strom erzeugen. Das durch die Turbinen gelaufende Wasser wird unterirdisch in Flözen und Höhlräumen aufgefangen. Bei Windstrom-Überflüss wird es wieder hoch in den Speichersee gepumpt, wodurch der Windstrom als potentielle Energie gespeichert wird, die später bei Bedarf wieder in Strom rückverwandelt werden kann. Die Grafik ist abgedruckt im Artikel: Das grüne Erbe der Kohle [FR 08.11.11, S.14]
|
|||||||||||||||||||||||||||||||||||||
Pumpspeicherkraftwerk 17.06.11 (341) |
dpa-Globus : Puffer im Stromnetz Da die Wind- und Solarstrommenge im Zeitverlauf stark schwankt, muss Strom in Phasen von hohem Angebot gespeichert und bei Stromknappheit wieder ins Netz eingespeist werden. Die bisherige von 31 Pumpspeicherkraftwerken bereitgestellte Pufferkapazität von rund 7 GW und 40 GWh reicht bei weitem nicht aus, um z.B. eine mehrtägige Windflaute auszugleichen. Im Zuge der Energiewende muss also die Speicherkapazität stark ausgebaut werden. Die bisher energieeffizienteste großvolumige Speichertechnik ist die Pumpspeicherung, bei der Wasser aus einem Unterbecken in ein höhergelegenes Oberbecken gepumt wird. Strom wird also als potentielle Energie gespeichert. Bei Strommangel strömt das Wasser aus dem Oberbecken wieder zurück ins Unterbecken, wobei es einen Generator antreibt. So wird die potentielle Energie zurück gewandelt in Strom. Um nennenswerte Speicherkapazitäten zu erzielen, sind große Wasserbecken und Höhenunterschiede erforderlich, weshalb der Aus- und Neubau von Pumpspeicherkraftwerken oft auf Widerstand in der betroffenen Region trifft, aktuell z.B. in Atdorf im Schwarzwald. => Großansicht: Bezug Großansicht: Galerie
|
|||||||||||||||||||||||||||||||||||||
Stromverbrauch private Haushalte 17.05.11 (336) |
EnergieAgentur NRW: Stromverbrauch in privaten Haushalten Die Auswertung von 380.370 Ein- bis Sechs-Personen-Haushalten ergab, dass die Anzahl der Personen im Haushalt und die Lebenssituation (z.B. Single) erheblichen Einfluss haben auf den Stromverbrauch insgesamt wie auch auf seine Verteilung auf die Sektoren. Im Durchschnitt über alle Haushalte ergeben sich folgende Anteile in %. Büro 12,9; TV/Audio 11,9; Warmwasser 11,9; Kühlen 10,4; Licht 9,7; Kochen 9,0; Diverses 7,2; Trocknen 6,6; Umwälzpumpe 6,0; Spülen 5,1; Waschen 4,9; Gefrieren 4,5. Bei allen Haushalten zählen TV/Audio sowie - falls vorhanden - ein Arbeitszimmer und die Warmwasserbereitung zu den Top 4 Verbrauchsbereichen. Energieagentur NRW: Details der Analyse Großansicht der Grafik
|
|||||||||||||||||||||||||||||||||||||
Stromkosten-Vergleich 05.05.11 (334) |
dpa-Globus : Was Strom wirklich kostet Die üblichen Strompreise, die sich an der Strombörse EEX durch den Stromhandel bilden, spiegeln nicht im vollen Umfang die Kosten wieder, die insgesamt unter Einbeziehung der sog."externen Kosten" (u.a. staatliche Förderung; Treibhausgase, sonstige Umweltschäden) entstehen. Für diese "wirklichen" Stromkosten ergeben sich aus einer FÖS-Studie im Auftrag von Greenpeace-Energy folgende Entstehungspreise (in Ct/kWh): Wasserkraft 6,5; Onshore-Windstrom 7,6; Braunkohle 12,1; Steinkohle 12,1; Atomstrom 12,8*; Photovoltaik-Strom 46,5. * Beim Atomstrom bleiben die Kosten eines Super-GAUs bzw. entsprechend erhöhte Versicherungsprämien (bis zu 270 Ct/kWh: s. Grafik in taz 06.11.10) ebenso unberücksichtigt wie die Kosten für die Endlagerung von Atommüll, da sie nicht hinreichend verlässlich geschätzt werden können. Wie beim UBA werden daher behelfsweise die externen Kosten des schlechtesten fossilen Brennstoffs, der Braunkohle, angesetzt. => Großansicht: Bezug
|
|||||||||||||||||||||||||||||||||||||
Windpark-Baltic-1 02.05.11 (332) |
FR-Grafik: Offshore-Windpark Baltic 1 Am 27.4.10 ging das erste deutsche Testfeld für Offshore-Windkraftanlagen, "Alpha Ventus", vor Borkum in der Nordsee (54.0,6.6) in Betrieb. Ein Jahr später, am 2.5.11, wurde "Baltic 1", der erste kommerzielle Offshore-Windpark, eingeweiht. Er liegt 16 km nördlich der Halbinsel Darß in der Ostsee (54.6,12.7) und umfasst 21 Windkraftanlagen (Rotordurchmesser 93 m, Nabenhöhe 67 m, Leistung 2,3 MW) mit insgesamt 48,3 MW Nennleistung. Aus einer Windgeschwindigkeit von im Durchschnitt 9 m/s prognostiziert der Betreiber EnBW eine Strommenge von ca. 185 GWh pro Jahr (entspricht 50.000 Drei-Personen-Haushalte à 3700 kWh/a). Im Jahr 2013 will EnBW den Windpark Baltic 2 in Betrieb nehmen. Er soll sechsmal so viel Strom wie Baltic 1 erzeugen. Aufgrund der Zurückhaltung von Investoren, insbesondere Banken, in Folge der internationalen Finanzkrise stockt der Ausbau der Offshore-Windparks. Ob das Minimalziel der Bundesregierung, 10.000 MW (=10 Atomkraftwerke) bis 2020, noch erreicht werden kann, ist fraglich. Die Landkarte ist eingelinkt im Artikel: Gegenwind auf hoher See [FR 02.05.11]
|
|||||||||||||||||||||||||||||||||||||
AKW-Grenzgebiet-D 14.04.11 (329) |
FR-Grafik: Atomkraftwerke (AKW) im Grenzgebiet zu Deutschland In der Landkarte sind 12 AKW-Standorte (mit insgesamt 24 Reaktoren) im nahen Ausland zu Deutschland als rote Punkte markiert. Aufgrund vieler Störfälle in der Vergangenheit gelten Fessenheim (F) und Leibstadt (CH) bei Freiburg sowie Temelin (CZ) bei Passau als besonders gefährlich. Ergänzend zur Grafik wird im folgenden hinter dem Standort das Nationalitätszeichen, die Anzahl der Reaktoren und die Entfernung in km zur nächsten Großstadt in Deutschland angegeben. Aachen: Tihange (B, 3, 65); Chooz (F, 2, 118); Doel (B, 4,141); Borssele (NL, 1, 179); Trier: Cattenom (F, 4, 48); Freiburg: Fessenheim (F, 2, 25); Leibstadt (CH, 1, 52); Beznau (CH, 2, 57); Gösgen (CH, 1, 70); Mühleberg (CH, 1, 125); Passau: Temelin (CZ, 2, 95); Dukovany (CZ, 4, 207). Hier wird jeweils nur die nächste Großstadt pro AKW-Standort angegeben. Im Umkreis von z.B.100 km oder 250 km zu einem AKW liegen meist sehr viel mehr Großstädte (s. Atomenergie-Daten > Ausland) Die Grafik ist abgedruckt im Artikel: Gefährliche Nähe. Deutschland ist umgeben von Atomkraftwerken. [FR 14.04.11]
|
|||||||||||||||||||||||||||||||||||||
Atomausstieg 19.03.11 (318) |
FR-Grafik: Ausstieg aus der Atomkraft Schon bis 2015 kann der Atomausstieg gelingen, so das Ergebnis eines Szenarios von Prof. Olav Hohmeyer (Uni Flensburg, SRU-Mitglied). In einer Übergangsphase werden verstärkt 15 GW-Reserve- + 12 GW bereits geplanter Kapazität fossiler Kraftwerke eingesetzt, darunter möglichst viele CO2-arme Gaskraftwerke mit KWK. Der zwischenzeitlich erhöhte CO2-Ausstoß wird kompensiert durch eine CO2-freie Stromerzeugung ab 2030 vollständig aus Erneuerbaren Energien. Die Grafik ist eingelinkt im Artikel: Ausstieg aus der Atomkraft ist machbar [FR 19.03.11]
|
|||||||||||||||||||||||||||||||||||||
Stromlast 17.03.11 (314) |
EEX-Grafik: Stromlastverlauf in Deutschland Die Transparenzplattform der Strombörse EEX in Leipzig zeigt täglich den Verlauf der deutschlandweiten Stromlast (nachgefragte Stromleistung). Die tatsächliche Produktion wird mit der geplanten verglichen und laufend aktualisiert, wobei der Beitrag konventioneller Kraftwerke sowie Wind- und Solarkraft getrennt dargestellt werden. In etwa ergeben sich folgende Bandbreiten, die allerdings jahreszeitlich und wetterbedingt varrieren können: Spitzenlast: 60-70 GW; Grundlast: 30-40 GW; Wind: 0-20 GW; Solar: 0-12 GW. Der Beitrag der Solarenergie (Photovoltaik) ist in der Jahressumme im Vergleich zum Windstrom noch gering, die eingespeiste Leistung überschreitet jedoch an sonnenreichen Tagen während der Mittagsstunden schon die 10 GW-Marke. Die Lastverlauf wird laufend aktualisiert: Transparenzplattform der EEX
|
|||||||||||||||||||||||||||||||||||||
Stromnetzbetreiber 25.02.11 (306) |
dpa-Globus : Strom in Deutschland Der Strom wird hauptsächlich in folgenden Regionen und Kraftwerken produziert: Braunkohle in Sachsen und Brandenburg; Stein-/Braunkohle und Erdgas in NRW sowie 17 Atomkraftwerke vor allem im Norden und Süden. Hinzu kommt zunehmend Windstrom von Standorten an den Küsten und künftig auch von Offshore-Windparks. Über ein Höchstspannungsnetz (220 oder 380 kV-Leitungen) wird der Strom deutschlandweit verteilt. Vier Betreiber haben dieses Netz unter sich aufgeteilt: TenneT (vormals Eon) von Nord bis Süd in der Mitte; Amprion (Tochtergesellschaft der RWE) im Westen und in Teilen Bayerns; Elia (vormals Vattenfall) im Osten und EnBW in Baden-Württemberg. Neben der Stromverteilung müssen die Übertragungsnetzbetreiber das Stromangebot an die -nachfrage durch Lastfolgebetrieb und das Bereitstellen von Regelenergie (flexible Gaskraftwerke; Pumpspeicher) anpassen. Künftig wird auch umgkehrt die Anpassung der Nachfrage (Smart Grid) an das volatile Aufkommen von Wind- und Solarstrom hinzukommen. => Großansicht: Bezug Großansicht: Galerie
|
|||||||||||||||||||||||||||||||||||||
EE-Daten-2010 07.02.11 (301) |
BEE-Daten: Jahreszahlen Erneuerbare Energien 2010 Im Jahr 2010 haben die Erneuerbaren Energien (EE) laut BEE den Import fossiler Energien im Wert von 7,4 Mrd. Euro eingespart (2009: 6 Mrd.), wobei vermiedene externe Kosten (Klima-, Umwelt-, Gesundheits- und Materialschäden) infolge von nicht regenerative Energien noch nicht eingerechnet wurden. Insgesamt (Strom + Wärme + Vekehr) stieg die Ökonenergie gegenüber 2009 um 6,4 % auf 265 TWh (10,5 % vom EEV). Nach Einschätzung des BEE kann der Anteil des Ökostroms von derzeit 17,4 % auf 50 % im Jahr 2020 gesteigert werden, falls bei der Novellierung des Erneuerbare Energien Gesetzes (EEG) und des Energiewirtschaftsgesetzes (EnWG) klare Regelungen in Richtung einer konsequenten Energiewende getroffen werden. Da diese im Wärme- und Verkehrsbereich noch weitestgehend fehlen, ist der EE-Ausbau dort bisher nur sehr gering und bleibt weit hinter dem Potenzial zurück. Datenblatt: EE-Jahreszahlen 2006 bis 2010 [BEE 07.02.11]
|
|||||||||||||||||||||||||||||||||||||
Hubspeicherung-Felszylinder 20.01.11 (378) |
Prof. Heindl: Hubspeicherung mit großem Felszylinder Das wachsende aber stark schwankende Aufkommen an Wind-und Solarstrom erfordert den Ausbau von großvolumigen Stromspeichern. Dazu schlägt Prof. Eduard Heindl einen gigantischen Hubkolben z.B. im Schwarzwald vor: Aus dem Fels wird ein Granitzylinder mit z.B. Radius r=500 m und Höhe h=r= 500 m geschnitten. Wird dieser Zylinder um r = 500 m hydraulisch angehoben, speichert er eine Strommenge von rund 1,7 TWh*. Da im Beispiel h=r gewählt wird, wächst die Speicherkapaziät mit dem Faktor r4, eine z.B. Verdopplung der Dimensionen bringt eine 24 = 16-fache Speicherkapaziät. * = durchschnittlicher Stromverbrauch pro Tag in Deutschland: 600 TWh/365= 1,7
|
|||||||||||||||||||||||||||||||||||||
Ringwallspeicher Dezember 10 (293) |
BWK: Ringwallspeicher Ein Ringwallspeicher ist ein künstlich im Flachland, z.B. in Norddeutschland, geschaffenes Pumpspeicherkraftwerk, bei dem ein großvolumiger Ring (Unterbecken) ausgehoben und der Aushub in der Mitte zu einem Wall aufgehäuft wird, der ein höherliegendes Speicherbecken (Oberbecken) umschließt. Bei z.B. einem Durchmesser von 11,4 km und einer Höhendifferenz von 200 m wird eine Durchschnittsleistung von 2 GW über 14 Tage bereitgestellt, die Speicherkapazität beträgt also 2 GW1424 h = 672 GWh*. Werden zusätzlich noch Wind-, Solar- und Biomassekraftwerke auf dem Wall und am Ring installiert, kann die Spitzenleistung auf 3,2 GW gesteigert werden. * Eine Verdopplung der Dimensionen (2-facher Durchmesser und 2-fache Höhe) liefert eine 24 = 16-fache Kapazität. Bisherige Kapaziät aller Pumpspeicherwerke in Deutschland: 7 GW | 40 GWh. Daten/Berechnungen: "Regenerativstrom im Ringwall speichern" [BWK Nr. 12/2010 ab S. 53]. Die Grafik ist eingelinkt unter: "Ringwallspeicher-Hybridkraftwerk" (Ingenieurbüro Matthias Popp, ohne Datum)
|
|||||||||||||||||||||||||||||||||||||
Pumpspeicherkraft 25.11.10 (294) |
ZEIT-Grafik: Konzepte für Pumpspeicherkraftwerke mit Untertagebau, Tagebau, Berghalden und Steilküsten Das ständig wachsende aber schwankende Angebot an Wind- und Solarstrom erfordert einen starken Ausbau von Speicherkraft. Zwar sind Pumpspeicherkraftwerke besonders energieeffizient, es mangelt in Deutschland aber an nennenswerten Ausbaukapazitäten bei der konventionellen Pumpspeicherkraft, die Höhenunterschiede zwischen Berg und Tal ausnutzt. Verwertbare Höhendifferenzen bieten aber auch z.B. der Untertagebau und Berghalden im Ruhrgebiet, der Tagebau in Braunkohlerevieren sowie Steilküsten. Die beiden Grafiken stellen die Funktionsweise der entsprechenden Speicherkraftwerke im Schema dar. Ob solche Speicherkraft-Varianten großtechnisch rentabel realisierbar sind, wird derzeitig noch erforscht. Ein Problem dabei ist, dass nennenswerte Speicherkapazitäten großvolumige* Speicherbecken und möglichst große Höhenunterschiede* erfordern. * Beispiel: Hochpumpen von 1 Mio m³ Wasser um 100 m speichert 272.500 kWh. Die beiden Grafiken sind eingelinkt im Artikel: Speicherplatz für Ökostrom [ZEIT 25.11.10]
|
|||||||||||||||||||||||||||||||||||||
Stromkosten 06.11.10 (274) |
taz-Grafik: Stromerzeugungskosten Die Infografik vergleicht die Produktionskosten (P), die Subventionskosten (S) und die externen Kosten (E; u.a. Umweltschäden, Schäden im Katastrophenfall). Kosten für P|S|E in ct/kWh: Steinkohle: 3,3|0,5|6; Braunkohle: 2,9|0,5|7; Biomasse und erneuerbare Abfälle: 9,6|3,5|2,9; Gase: 4,2|0,5|2,9; Wasser-/Windkraft: 14|3,5|0,15; Kernenergie: 3,5|3,2|270*; Photovoltaik: 55|3,5|0,8. *Geschätzte Versicherungsprämie, wenn die Schäden im Falle eines Super-GAUs nach üblichen Industriestandards in vollem Umfang versichert werden müssten. Bisher sind nur 2,5 Mrd.€ von 5500 Mrd.€ (weniger als 1/2000) der Schäden versichert. Die Grafik ist eingelinkt im Artikel: Was uns die Atomkraft kostet [taz 06.11.10]
|
|||||||||||||||||||||||||||||||||||||
Atomkraft-Kosten 06.11.10 (273) |
taz-Grafik: Die wahren Kosten der Atomkraft Aus Anlass der CASTOR-Transporte vom 6.bis 8.11.10 stellt die taz auf einer Doppelseite Daten zur Stromproduktion und Atomkraft zusammen: - Gewinne der Konzerne Eon, RWE, EnBW, Vattenfall von 2000 bis 2009 - Strompreis für Privat-/Gewerbekunden, Steuern/Abgaben; Stromproduktion - Förderung/ Subventionen der Atomkraft - Durchschnitts-Alter: AKW weltweit, stillgelegte AKW, älteste AKW - Preissteigerung beim AKW-Neubau in Finnland - Schadenskosten im Falle eines Super-GAUs, Versicherungskosten - Stromkosten: Produktion, Subventionen und externe Kosten Die Grafik ist eingelinkt im Artikel: Die wahren Kosten der Atomkraft [taz 06.11.10]
|
|||||||||||||||||||||||||||||||||||||
Pumpspeicherwerk 16.09.10 (266) |
ZEIT-Grafik: Pumpspeicherkraftwerk Atdorf Im Schwarzwald baut die Schluchseewerk AG (Gemeinschafsunternehmen von RWE und EnBW) das größte Pumpspeicherkraftwerk in Deutschland. Es wird 1,4 GW * Leistung kurzfristig ins Netz einspeisen können, um z.B. Windstromflauten auszugleichen. Umgekehrt können bei Windstromüberschuss bis zu 9 Mio m³ Wasser 600 m hoch gepumpt werden, wodurch eine Strommenge von 14,7 GWh ** gepuffert wird. Die Bedingungen für den Bau des Speicherwerks sind einmalig günstig: Schutzgebiete bleiben unberührt, niemand muss umgesiedelt werden, neue Freileitungen sind nicht nötig, die Stromanbindung kann über ein bestehendes Umspannwerk erfolgen. In der Region ist das Speicherwerk jedoch umstritten und fast 1000 Einsprüche wenden sich gegen den Bau. Nachtrag 22.3.12: Das Pumpspeicher-Projekt droht wegen mangelnder Rentabilität ( fehlender Atomstrom nachts und viel Solarstrom mittags) eingestellt zu werden . * alle bisherigne Pumpspeicherkraftwerke zusammen bieten 6,7 GW | 40 GWh. ** zur Berechnung: siehe: Joule > Berechnungsbeispiel 2. Die Grafik ist eingelinkt im Artikel: Grün gegen Grün im Hotzenwald. Um die Windenergie zu fördern, sind große Speicherkraftwerke nötig [ZEIT 38/16.09.10, S.41]
|
|||||||||||||||||||||||||||||||||||||
Erneuerbare Energien 24.08.10 (263) |
BMU-Grafik: Anteile Erneuerbarer Energien an der Energiebereitstellung in Deutschland Die Grafik zeigt die Entwicklung der Anteile (in %) der Erneuerbarer Energien (EE) im Zeitraum 1998 bis 2009: Endenergieverbrauch (EEV): Anstieg von 3,2 auf 10,3 Bruttostromverbrauch: Anstieg von 4,7 auf 16,1 EEV-Wärme: Anstieg von 3,6 auf 8,8 Kraftstoffverbrauch: Anstieg von 0,2 auf 6,1 im Jahr 2006, dann Abfall auf 5,5 Primärenergieverbrauch (PEV): Anstieg von 2,6 auf 8,9 Die Grafik ist abgebildet auf S.9 der BMU-Broschüre " Erneuerbare Energie in Zahlen" [pdf, 9,4 MB]
|
|||||||||||||||||||||||||||||||||||||
Stromtrassen-DE 24.06.10 (257) |
FR-Grafik: Stromtrassen in Deutschland: 380 kV-Leitungen: Bestand und Ausbau Das rasant steigende Ökostrom-Angebot, darunter große Anteile des volatilen Wind-und Solarstroms, erfordern den schnellen Ausbau der Hochspannungsnetze und der Stromspeicherkapaziäten. Zum bisher 40.000 km langen 380 kV-Netz sollen in einer ersten Ausbaustufe 850 km ergänzt werden, bisher wurden aber nur 80 km realisiert. Die geplanten Neubau-Trassen, z.B. eine 380 kV-Trasse durch den Thüringer Wald ("Thüringer Strombrücke"), sind jedoch hoch umstritten und von Bürgerinitiativen bekämpft. Sie behaupten, dass durch besseres Netzmanagement, durch Angleichung von Stromangebot und - nachfrage auf eine Reihe neuer Stromtassen verzichtet werden könne, die vermutlich eher zur Ausweitung des EU-weiten Stromhandels verwendet werden sollen statt Teil einer echten Energiewende in Deutschland zu werden. Die Grafik ist eingelinkt im Artikel: Wandern von Mast zu Mast [FR 24.06.10], Teil 2/6 der FR-Serie zur Energiewende
|
|||||||||||||||||||||||||||||||||||||
Solarstrom-Potenzial 04.06.10 (251) |
FR-Grafik: Potenzial für weltweite Sonnenkraftwerke Laut Neuauflage der Studie „Energy[r]evolution“ könnte bis 2050 der Anteil des Ökostroms am weltweiten Stromverbrauch auf 95 % gesteigert werden, darunter 20 % aus großen Solarkraftwerken, wie sie z.B. bei Desertec geplant sind. In der Weltkarte wird die regional unterschiedliche Intensität der Sonneneinstrahlung anhand der Färbung (von dunkelrot = sehr hoch bis hellgelb= sehr gering) veranschaulicht. Außerdem wird für jede Region die Einstrahl-Fläche in km² angegeben, die benötigt wird, um den Energieverbrauch dieser Region komplett durch Solarenergie zu decken, darunter z.B.: Nordamerika 63658, China+Indien 47743, Europa 38447, Afrika 35764. Weltweit werden 390122 km² benötigt. Die Weltkarte ist eingelinkt im Artikel "Wüstenstrom für die ganze Welt" [FR 04.06.10].
|
|||||||||||||||||||||||||||||||||||||
Windkraftleistung 30.04.10 (260) |
dpa-Globus : Windkraft weltweit von 1996 bis 2009 Die weltweite Windkraft-Kapazität stieg von 6100 MW im Jahr 1966 auf 158505 MW im Jahr 2009. Weiteres starkes Wachstum ist zu erwarten, wobei die deutsche Windkraftbranche Weltmarktführer ist mit einem Anteil von 25 bis 30 % an der Weltproduktion von Windkraftanlagen. Ein großer Nachholbedarf besteht vor allem in in Osteuropa. Der Anteil in % der TOP 10 Länder 2009 beträgt: USA 22,1; China 16,3; Deutschland 16,3; Spanien 12,1; Indien 6,9; Italien 3,1; Frankreich 2,8; Großbritannien 2,6; Portugal 2,2; Dänemark 2,2. => Großansicht: Bezug
|
|||||||||||||||||||||||||||||||||||||
Strommix-EU-2007-2030 09.04.10 (230) |
vdi-Grafik: Der Strommix in der EU - heute und in 20 Jahren Der Branchenverband BEE prognostiziert für Deutschland einen Ökostrom-Anteil von fast 50 % bis zum Jahr 2020. Laut eines VDMA-Szenarios wird dieser Anteil in der EU-27 erst 10 Jahre später erreicht. Die Grafik vergleicht den EU-Strommix im Jahr 2007 (insgesamt 3298 TWh) mit jenem im Jahr 2030 (insgesamt 3728 TWh) (Anteile in %): Ökostrom 16|48; fossiler Strom 56|33; Atomstrom 28|19. Die Grafik ist eingelinkt im Artikel: Energie-Planspiel EU 2030: 1 Billion EUR für neue Kraftwerke [FR 09.04.10]
|
|||||||||||||||||||||||||||||||||||||
EE-Endenergie 24.03.10 (226) |
AGEE-Grafik: Endenergie-Anteil erneuerbarer Energien 1990 bis 2009 Der Beitrag erneuerbarer Energien an der Endenergie stieg von rund 50 TWh im Jahr 1990 auf 237,8 TWh ( = 110,5 TWh Wärme + 93,8 TWh Strom +33,8 TWh Kraftstoff) im Jahr 2009. Damit liegt der Anteil erneuerbarer Energien an der Endenergie 2009 bei 237,8 * 3,6 PJ / 8470 PJ = 10,1 % (1 TWh = 3,6 PJ, s. Umrechnung). Die Grafik ist eingelinkt im Artikel: Endenergie-Anteil erneuerbarer Energien erstmals über 10 % [BMU 24.03.10]
|
|||||||||||||||||||||||||||||||||||||
Stromspeicherung 18.03.10 (228) |
ZEIT-Grafik: Stromspeicherung Durch das immer größer werdende volatile Ökostrom-Aufkommen wird die großvolumige Stromspeicherung immer wichtiger. Bisher verfügbar sind Pumpspeicherkraftwerke mit einer Pufferleistung von rund 7 GW und einer Speichermenge von 40 GWh. Etwa 3 mal so viel Pufferkapazität wäre schon im Jahr 2009 notwendig gewesen, um Spitzenwerte beim Windstrom (z.B. am 25./26.12.09: 20 GW |100 GWh) zu puffern. Die weiteren 8 Möglichkeiten, Strom zu speichern - mechanisch: Druckluft, Schwungrad; elektrochemisch: Akku, Brennstoffzelle, Flow-Batterie; elektrisch: Doppelschichtkondensator, supraleitende Schule, intelligentes Stromnetz - sind entweder bisher nur kleinvolumig einsetzbar oder noch in Forschung und Entwicklung. Zu jeder Stromspeichervariante bietet die Grafik eine kurze Erläuterung sowie Kurzinfos zu folgenden Aspekten: Wirkungsgrad, Abnutzung, Besonderheiten, Kosten und Entwicklungsstadium im Hinblick auf einen großvolumigen Einsatz als Stromspeicher. Die Grafik ist eingelinkt im Artikel: Strom auf Vorrat [ZEIT 18.03.10]
|
|||||||||||||||||||||||||||||||||||||
EE-2009 18.03.10 (227) |
AGEE-Studie: Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2009 Nach vorläufigen Schätzungen betrug der Endenergieverbrauch im Jahr 2009 in Deutschland insgesamt 8470 PJ, davon wurden 10,1 % durch Erneuerbare Energien (EE) bereitgestellt: 7,0 % Biomasse, Windenergie 1,6 %, 0,8 % Wasserkraft und 0,7 % restliche EE. Durch die EE wurden Treibhausgas-Emissionen von rund 109 Mt CO2-Äquivalent. Laut IEKP will Deutschland seine Emissionen bis 2020 um 40 % gegenüber 1990 senken. Der weitere Ausbau der EE soll dabei zusammen mit dem Energiesparen und der Steigerung der Energieeffizienz den Hauptbeitrag leisten. Die Grafik findet sich auf S.4 der Studie: Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2009 [pdf, 925 KB, BMU/ AGEE 18.03.10]
|
|||||||||||||||||||||||||||||||||||||
Windstrom-12-2009 März 10 (217) |
BWK-Grafik: Windstrom-Einspeisung im Dezember 2009 Die Stäbe zeigen die Spanne zwischen dem Tagesmaximum und - minimum und den Mittelwert im Viertelstundentackt im Dezember 2009. Diese Spanne weist eine große Bandbreite auf: von weniger als 1 GW am 14./15.12. bis zu 15,9 GW am 25.12.. Insgesamt schwankte die eingespeiste Leistung zwischen fast 0 GW am 19.12. und 20,1 GW am 25.12.. Der Dezember der volatilste Windstrom-Monat im Jahr 2009. Die Großansicht ist abgedruckt (nicht online) in BWK Nr.03/2010, S.18.
|
|||||||||||||||||||||||||||||||||||||
Windstrom-2009 März 10 (216) |
BWK-Grafik: Windstrom-Einspeisung 2006 bis 2009 Die 4 Kurven (schwarz/fett: 2009) zeigen die eingespeiste Windstrommenge in TWh von Januar bis Dezember des jeweiligen Jahres: in den Wintermonaten schwankt die Strommenge pro Monat zwischen ca. 2 und 8 TWh, in den Sommermonaten zwischen ca. 1 und 3 TWh. Das Jahr 2009 war vergleichsweise windarm: Obwohl mit 25,8 GW rund 7,9 % mehr Windleistung als 2008 installiert war, stieg die Strommenge nur um 5,4 % auf 37 TWh an. Die eingespeiste Leistung erreichte Weihnachten einen Spitzenwert von rund 20 GW. Die Großansicht abgedruckt (nicht online) in BWK Nr.03/2010, S.18
|
|||||||||||||||||||||||||||||||||||||
Stromspeicherung 17.02.10 (196) |
FR-Grafik: Adiabates Druckluftspeicherkraftwerk Das wachsende aber stark schwankende Ökostrom-Aufkommen bedarf der Stromspeicherung im großen Umfang, wozu vor allem Pumpspeicherkraftwerke bereitstehen. Ihre bisherige gesamte Speicherkapazität von rund 7 GW und 40 GWh reicht allerdings bei weitem nicht aus, etwa Windstromspitzen wie Weihnachten 2009 zu puffern. Da die Ausbaukapazitäten beim Pumpspeichern eher als gering gelten, sollen verstärkt Druckluftspeicher in Norddeutschland ausgebaut werden, wo zahlreiche unterirdische Kavernen in Salzformationen große Speicherkapazitäten bieten, die zugleich realtiv nahe bei den künftigen Offshore-Windparks in der Nordsee liegen. Die Infografik zeigt schematisch den Aufbau eines Druckluftspeicherkraftwerks, bei dem die beim Komprimieren der Luft entstehende Abwärme in einem Wärmespeicher gepuffert wird, um sie bei der Dekompression wieder zu nutzen (adiabater Druckluftspeicher für die Elektrizitätsversorgung (Adele)) Die Grafik ist eingelinkt im Artikel: Energie für die Flaute [FR 17.02.10]
|
|||||||||||||||||||||||||||||||||||||
Strompreis 16.02.10 (193) |
Tagesschau: Zusammensetzung des Strompreises Der Strompreis setzt sich wie folgt zusammen (Anteile in %): Strombeschaffung und Vertrieb: 37,6; Netznutzungsentgelte 25,0; Steuern (Ökosteuer + Mehrwertsteuer) 24,8; Konzessionsabgabe 6,4; EEG-Umlage 5,2; KWK-Umlage 1,0. Quelle: Bundesnetzagentur 2009 Die Grafik ist eingelinkt im Artikel: Fragen und Antworten zum Ökostrom [Tagesschau 16.02.10]
|
|||||||||||||||||||||||||||||||||||||
Windkraft-1990-2009 05.02.10 (183) |
dpa-Globus : Vom Winde bewegt Die Kurve (oben) zeigt den Anstieg der installierten Windkraft-Kapazität (in MW) von 55 im Jahr 1990 auf 25.777 am Jahresende 2009. Trotz der Wirtschaftskrise stieg die Windkraft-Kapazität 2009 um 15 %. Das Balkendiagramm (unten) veranschaulicht den Anteil des Windstroms am Stromverbrauch 2009 in den Bundesländern: Die Spitzenreiter im Norden haben Anteile von 38 bis 47 %, der Durchschnitt für Deutschland liegt bei 8,6 %, die anderen Bundesländer (Mitte, West, Süden) haben Anteile von ca 8 bis unter 1 %. => Großansicht der Grafik: Bezug
|
|||||||||||||||||||||||||||||||||||||
Nordsee-Supergrid 05.01.10 (159) |
: Ökostrom-Verbundnetz für Nordsee-Anrainerstaaten Neun Staaten an der Nordsee (Benelux, Deutschland, Dänemark, Frankreich, Großbritannien, Irland, Norwegen) wollen mit einem großräumigen Stromverbundnetz (Supergrid) ihre verschiedenen Ökostromquellen, insbesondere die Windkraft und Meeresenergie der Nordsee, mittels HGÜ vernetzen. Durch den Stromverbund kann das regional und jahreszeitlich schwankende Ökostrom-Aufkommen besser ausgeglichen werden, wobei das enorme Potenzial der Wasserkraft in Norwegen sowohl kurzfristig Leistungspitzen puffern wie auch langfristig Strom großvolumig speichern kann. Das Verbundnetz soll bis Ende 2010 geplant und bis 2020 für rund 30 Mrd. Euro realisiert werden. mehr.. SZ Tagesschau taz FR Die Grafik befindet sich auf S.5 der Studie: A north sea electricity grid [r]evolution
|
|||||||||||||||||||||||||||||||||||||
Windstromrekord-2009 Windstrom 25./26.12.09 26.12.09 (158) |
EEX-Grafiken: Windstrom-Rekord Weihnachten 2009 In den 5 Stunden ab dem 25.12.09 21 Uhr speisten die Windkraftwerke in Deutschland eine Rekord-Strommenge von 100 GWh ein, im Durchschnitt 20 GW. Zusammen mit den 11 GW der Kohle- und 12 GW der Kernkraftwerke entstand ein hoher Stromüberschuss, der den Strompreis an der Leipziger Strombörse (EEX) am frühen Morgen des 26.12. auf ein Allzeittief von 20 Ct/kWh senkte, d.h. die Kraftwerksbetreiber mussten Geld für die Abnahme ihres überschüssigen Stroms bezahlen. Grund dafür sind einerseits die zu geringen Stromspeicher-Kapazitäten, andererseits die mangelnde Flexibilität der Kohle- und Kernkraftwerke: um Brennstoffkosten zu sparen und die Umwelt weniger zu belasten, müssten diese nicht regenerativen Kraftwerke in Zeiten von hohem Ökostrom-Aufkommen eigentlich runter gefahren werden. Doch dazu sind diese Kraftwerke rein technisch meist nur unzureichend in der Lage oder das Runterfahren ist so kostenaufwändig, dass es für die Betreiber günstiger ist, für die Abnahme des überschüssigen Kohle- und Atomstroms zu zahlen. Die Grafiken/ Daten zur Windstromproduktion und zum Strompreis sind im Archiv der EEX abrufbar. Weitere Infos: ZEIT 1/2010, taz 2.1.10.
|
|||||||||||||||||||||||||||||||||||||
Windenergie 01.12.09 (147) |
Allianz-Umweltstiftung: Windstärken in Europa und Deutschland In der Europakarte sind die Regionen anhand ihrer mittleren Windgeschwindigkeit in 10 Meter Höhe unterschiedlich farbig markiert ( in Meter pro Sekunde m/s): Besonders windreich (>11,5 m/s: dunkelrot) sind Schottland und die Westküsten von Irland, Dänemark und Norwegen sowie spezielle Lagen in den Pyrenäen, im Zentralmassiv und den Alpen. Sehr windergiebig (5 bis 11,5 m/s: dunkelblau) sind auch Küstenregionen am Atlantik (Nordportugal, Bretagne und Ärmelkanal) sowie an Nord-und Ostsee. In Deutschland sind die windreichsten Regionen (> 5 m/s) die Nordseeküste und der nördlichste Teil der Ostseeküste sowie spezielle Lagen in den Gebirgen im Inland. Großansicht der Grafik: S.22 bzw. Folie 9/Bild 3, in: Allianz-Umweltstiftung: Informationen zum Thema "Klimaschutz": Erkenntnisse, Lösungsansätze und Strategien [01.12.09]
|
|||||||||||||||||||||||||||||||||||||
EE-Anteil-Strom-PEV-D-1998-2008 Großansicht Dezember 09 (162) |
UBA-Grafik: Anteil Erneuerbarer Energien am Primärenergieverbrauch und Bruttostromverbrauch Der Anteil der Erneuerbaren Energien (EE) am Bruttostromverbrauch hat sich von rund 5 % in 1998 auf 14,8 % in 2008 fast verdreifacht. Das Ziel der Bundesregierung, 12,5 % bis 2010, ist damit bereits vorzeitig erreicht. Bis 2020 werden mindestens 30 % angestrebt. Der Branchenverband BEE prognostiziert sogar 47 %. Der EE-Anteil am gesamten Primärenergieverbrauch (PEV) stieg von etwa 3 % in 1998 auf 7,1 % im Jahr 2008. Auch hier wurde das Regierungsziel, 4,2 % bis 2010, inzwischen weit überboten. Auch das Ziel 10 % bis 2020 wird vermutlich deutlich früher erreicht werden. Die Grafik findet sich auf S.3 in: Fakten zur Umwelt, Auszug aus der UBA-Broschüre: Daten zur Umwelt, Ausgabe 2009
|
|||||||||||||||||||||||||||||||||||||
Windstrom-2009-Jan-Feb Dezember 09 (146) |
BWK-Grafik: Windstrom-Einspeisung Die Grafik zeigt für die Monate Januar und Februar 2009 den Verlauf der prognostizierten (violette Kurve) im Vergleich zur real ins Netz eingespeisten Windleistung (blaue Kurve) im Nordosten Deutschlands (Übertragungsnetz von Vattenfall). Beide Kurven sind nahezu deckungsgleich und weichen nur in etwa 10 kurzen Phasen etwas voneinander ab, d.h. die zu erwartende Windleistung kann ziemlich genau vorhergesagt und daher gut in das Lastmanagement einbezogen werde. Die Windleistung schwankt stark zwischen etwa 0 bis ca. 6,5 GW, der Lastverlauf (rote Kurve oben) zwischen ca. 4,5 und 12,5 GW. Besonders windarm war die Phase vom 25.-31.01.09, wo gleichzeitig die Last mit 6 bis 12 GW besonders hoch war, d.h. fast die gesamte Last musste durch Nicht-Windstrom abgedeckt werden, d.h. derzeit immer noch aus fossilen oder nuklearen Kraftwerken. Um das zu vermeiden, müsste Windstrom in windreichen Phasen großvolumig gespeichert werden. Die maximale Speicherkapazität aller Pumpspeicherkraftwerke in Deutschland beträgt aber nur 7 GW und 40 GWh, reicht also lange nicht, um etwa die Windflaute vom 25.-31.01.09 auszugleichen. Einen Ausweg könnten großräumige Stromverbundnetze (Supergrid) und ein Lastmanagement über intelligente Steuerung einer Vielzahl von Stromerzeugern- und Verbrauchern (Smartgrid) bieten. Eine Großansicht der Grafik ist online nicht abrufbar. Sie ist abgedruckt in: Jochen Kreusel: Smart Grids, in: Energie-Fachmagazin BWK Nr.12/2009, S.7, Bild 1.
|
|||||||||||||||||||||||||||||||||||||
Kohlekraftwerke Text/ Großansicht 10.11.09 (129) |
FR-Infografik: Neue Kohlekraftwerke Im Februar 2008 stieß die dena mit ihrer Kraftwerksstudie, in der sie vor einer Stromlücke warnte, auf viel Widerspruch. Die Daten der Studie wurden inzwischen aktualisiert: Danach droht im Jahr 2020 eine Lücke von 10 bis 14 GW, wenn die alten Kohlekraftwerke am Ende ihrer normalen technischen Lebensdauer abgeschaltet werden. Da einige Neubauprojekte gestoppt wurden, weist die neue dena-Liste der "gesicherten" Kraftwerkskapazitäten 2 GW weniger aus als in der 2008-Studie. Auch wenn die Kapazität aller AKW von 17 GW die angenommene Stromlücke schließen würde, empfiehlt die dena, wegen der Atommüll- und Sicherheits-Problematik am Atomausstieg festzuhalten. Im Gegensatz zur dena sieht das UBA keine Stromlücke, wenn die Erneuerbaren Energien und die Energieeffizienz wie geplant weiter gesteigert werden. Die Grafik ist eingebettet im Artikel "Atomverlängerung macht Strom teuer" [FR 10.11.09]
|
|||||||||||||||||||||||||||||||||||||
Erneuerbare-Energien-1980-2008 18.09.09 (106) |
dpa-Globus : Grüne Energie: Strom, Wärme, Kraftstoff Der Anteil erneuerbarer Energien am Endenergieverbrauch (EEV) ist in den letzten 10 Jahren stark gewachsen (Vergleich 1998 mit 2008, Anteile in %):
=> Bezug der Infografik Großansicht zeitweise in Galerie
|
|||||||||||||||||||||||||||||||||||||
Schwarmstrom Großansicht/ Infos [Lichtblick] 09.09.09 (100) |
Lichtblick: SchwarmStrom - intelligente Energie für die Energiewende In Kooperation mit VW will der Ökostrom-Anbieter Lichtblick erstmals in Deutschland ein zentrales Element der Energiewende, das "virtuelle Kraftwerk", in großer Dimension realisieren: 100.000 Mini-BHKW in Haushalten auf Basis von flexiblen Gas-Motoren (maximale elektrische Leistung: 20 kW) werden über eine Zentrale so gesteuert, dass sie den fluktuierenden Wind- und Solarstrom ausgleichen helfen. Sich ändernde Parameter (Stromangebot) lösen also eine schnelle koordinierte Anpassungsreaktion von vielen Individuen (Mini-BHKW) aus, das charakteristische Verhalten von Schwärmen, weshalb Lichtblick die Bezeichnung "Schwarmstrom" für diese Art der flexiblen Stromerzeugung gewählt hat. Die Abwärme der Gas-Motoren (Heizleistung: 34 kW) wird nach dem KWK-Prinzip genutzt und in großvolumigen Wassertanks für Raumheizung und Warmwasser gespeichert. Bei der Vertragsgestaltung setzt Lichtblick ein weiteres zentrales Element der Energiewende um, nämlich von der Energiedienstleistung auszugehen. Der Kunde schließt mit Lichtblick nur einen Wärmeliefervertrag ab, den Strom überlässt er Lichtblick und ist in der Wahl des Stromlieferanten frei. Lichblick bleibt Eigentümer der von ihm als "ZuhauseKraftwerke" bezeichneten Mini-BHKW und ist verantwortlich für Wartung und Reparaturen, Versicherung und Schornsteinfeger. Lichtblick garantiert, dass der Preis pro kWh-Wärme immer günstiger ist als der regionale Erdgaspreis und zahlt einen Bonus von 0,5 Ct pro kWh-Strom. Lichtblick: Presseinfo Hintergrund Video "Schwarmstrom" "Das ZuhauseKraftwerk" "Wann sich die Anschaffung zu Hause rechnet" [taz 10.09.09] Weitere Presseartikel
|
|||||||||||||||||||||||||||||||||||||
Oekostrom 03.09.09 (105) |
dpa-Globus : Strom aus erneuerbaren Energien Der Anteil des Ökostroms an der Bruttostromerzeugung stieg von 3,4 % in 1990 auf 15,1 % in 2008. Vergleich der installierten Leistung in GW im Jahr 1990 und 2008: Windenergie 40 | 40.400; Biomasse: 222 | 22.518; Wasserkraft: 17.000 | 21.300; biogener Anteil des Abfalls: 1200 | 4.543; Photovoltaik: 1 | 4.000; Geothermie: 0 | 18. => Bezug der Infografik Großansicht zeitweise in Galerie | Serie
|
|||||||||||||||||||||||||||||||||||||
Meeresenergie 27.08.09 (101) |
ZEIT-Grafik: Energie aus dem Meer Die Grafik informiert über verschiedene erneuerbaren Energiequellen am oder im Meer (Off-Shore-Wind, Gezeiten, Wellen, Meeresströmung, Meereswärme, Osmose) und diesbezüglichen Kraftwerkstypen, deren Funktionsweise kurz erklärt wird. Der Status und das Potenzial der jeweiligen Energiequelle wird nach Kategorien bewertet. Je volatiler das Stromaufkommen aus diesen Energiequellen ist, besonders bei Windkraft, desto wichtiger wird die großvolumige Energiepufferung, was mit küstennahen Druckluftspeichern in unterirdischen luftdichten Kavernen möglich ist. Weitere, allerdings nicht regenerative Energiequellen bietet der Abbau von Erdöl und Gashydrat, u.a. in der Form von Methanhydratknollen, aus dem Meeresuntergrund. => Großansicht [pdf, 3,4 MB]
|
|||||||||||||||||||||||||||||||||||||
Strommix-2050 09.07.09 (91) |
ZEIT-Grafik: Die künftige Stromversorgung Die Infografik stellt Szenarien für die Entwicklung des Strommixes bis 2050 für die EU und die Staaten in Nahost / Nordafrika (MENA-Staaten) dar, die am DLR und ISET entwickelt wurden und von der am 13.7.09 gegründeten DESERTEC-Initiative aufgegriffen wurden. Mittels einer Vielzahl von Ökostrom-Kraftwerken im EU-MENA-Großraum, die über HGÜ-Stromtrassen vernetzt werden, soll Versorgungssicherheit nur mit Ökostrom hergestellt werden. Im dargestellten Szenario für die EU wachsen die Anteile der Windenergie, Biomasse und des Solarstromimports stark an, während die Kernkraft sowie Erdöl um 2040 auslaufen und Kohle sowie Erdgas stark zurückgehen. Im Szenario für die MENA-Region wächst die Solarthermie besonders stark, ab 2020 auch der Solarstromexport und die Meerwasserentsalzung. Erdgas und Erdöl steigen bis etwa 2030 noch an und gehen dann langsam zurück. Die Grafik ist eingebettet im Artikel: Das Gold der Wüste [ZEIT 29/09.07.09]
|
|||||||||||||||||||||||||||||||||||||
Supergrid 09.07.09 (90) |
ZEIT-Grafik: Stromautobahnen Die am 13.7.09 neu gegründete DESERTEC-Initiative greift Konzepte auf, die am DLR und ISET entwickelt wurden. Eine Vielzahl von Ökostrom-Kraftwerken (Windkraft, Wasserkraft, Biomasse, Solarthermie/ Photovoltaik, Geothermie) in Europa, Nordafrika und im Nahen Osten sollen mittels neuer HGÜ-Stromtrassen ("Stromautobahnen") vernetzt werden. Dieses Super-Stromverbundnetz (Supergrid) soll bis 2050 eine Vollversorgung mit Strom aus Erneuerbaren Energien für Nordafrika und den Nahen Osten ermöglichen. Europa würde sich größtenteils mit eigenem Ökostrom versorgen, etwa 1/6 des Strombedarfs würde über Import von Ökostrom abgedeckt. Der Stromgroßverbund ermöglicht den Ausgleich des regional teils stark schwankenden Ökostromaufkommens, was den Bedarf an Stromspeicherung klein hält und die Versorgungssicherheit erhöht. Die Grafik ist eingebettet im Artikel: Das Gold der Wüste [ZEIT 29/09.07.09]
|
|||||||||||||||||||||||||||||||||||||
Solarthermiekraftwerk 26.06.09 (92) |
dpa-Globus : Strom aus der Wüste Rund 2500 kWh Energie strahlt die Sonne auf jeden Quadratmeter Wüstenfläche in Nordafrika pro Jahr. Dieses reiche Energieangebot will die am 13.7.09 gegründete DESERTEC-Initiative künftig mittels Parabolrinnenkraftwerken nutzen. Die Infografik zeigt Aufbau und Funktionsweise solch eines Solarthermiekraftwerks im Schema. Die Parabolrinne bündelt die einfallenden Sonnenstrahl zu einer Brennlinie in Form einer Geraden, an deren Ort ein Absorberrohr verläuft, in dem ein Spezialöl auf etwa 400 °C erhitzt wird. Durch Zusammenschalten von Tausenden Parabolrinnen (Solarfeld) wird die Energieausbeute soweit gesteigert, dass sie dann mit der üblichen Technik eines Wärmekraftwerks (Wärmetauscher, Dampferzeuger, Turbine, Generator) in elektrischen Strom umgewandelt werden kann. Ein Teil der Wärmeenergie wird in einem Salzschmelze-Wärmespeicher gepuffert, um auch nachts Strom liefern zu können. Durch diese Energiezwischenspeicherung sind Parabolrinnenkraftwerke in der Lage, ein weitestgehend gleichbleibendes Stromangebot rund um die Uhr bereitzustellen, d.h. sie sind wie herkömmliche fossile oder atomare Kraftwerke fähig zur Grundlast. Daten/ Großansicht der Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromsparen-Haushalt 28.05.09 (86) |
Stiftung Warentest: Statistik: Stromeinspar-Potenziale im Haushalt Die Stiftung Warentest hat anhand der Geräteausstattung und den Verbrauchs-Gewohnheiten eines 3-4 Personen Modellhaushalts ermittelt, dass solch ein Haushalt seinen jährlichen Stromverbauch von 4665 auf 2505 kWh senken kann, wenn alte Stromfresser durch neue stromsparende Geräte ersetzt werden. Das größte Einsparpotenzial bietet die Beleuchtung: Werden alte Glühlampen durch Energiesparlampen ersetzt, kann der Stromverbauch für Beleuchtung von 1015 auf 185 kWh gesenkt werden. Das zweitgrößte Stromspar-Potenzial haben Kühl-Gefrier-Kombis: Von 605 auf 245 kWh. Auf Rang 3 folgt der Wäschetrockner: Von 405 auf 220 kWh. Die Grafik ist eingebettet im Artikel: Haushaltsbilanz Strom: Die Hälfte eingespart [Stiftung Warentest 28.05.09]
|
|||||||||||||||||||||||||||||||||||||
Supergrid 27.04.09 (64) |
FR-Infografik: Grünes Stromnetz Bereits in seiner Dissertation 2006 hat Gregor Czisch (Physiker Uni Kassel) nachgewiesen, dass eine Stromversorgung Europas unter ausschließlicher Nutzung bereits in der Praxis gut erprobter erneuerbarer Energien (Wind- und Wasserkraft, Biomasse) technisch und wirtschaftlich machbar ist. Um die regional stark schwankenden Aufkommen an Ökostrom auszugleichen, schlägt Czisch ein ganz Europa, Nordafrika und den Nahen Osten umfassendes Stromverbundnetz (Super-Grid) vor, in dem Ökostrom mittels Hochspannungs-Gleichstrom-Übertragung (HGÜ) über Tausende Kilometer verlustarm übertragen werden kann. Mit aktuellen Computersimulationen, die umfangreiche Daten aus 19 Regionen bewerten, zeigt Czisch, dass eine sichere Stromversorgung zu ca. 4,65 ct/kWh machbar ist. Laut Czisch setzt sich der optimale Energiemix wie folgt zusammen: 2/3 Windenergie (zu großen Teilen aus Afrika), 17 % Biomasse, 15 % Wasserkraft und nur 2 % Solarthermie. Ein Hauptgrund für den geringen Solarthermie-Anteil in dem optimierten Energiemix ist, dass der Solarthermie-Strom im Vergleich zu den anderen Ökostrom-Arten bis auf Weiteres noch zu teuer sind. Die Grafik ist eingebettet im Artikel: Das elektrische Internet. Ein gigantisches Öko-Stromnetz soll Europa mit Nordafrika verbinden [FR 27.4.09]. ähnliche Infografiken/ ergänzende Infos
|
|||||||||||||||||||||||||||||||||||||
Ökostrom-1990-2009 April 09 (75) |
BMU-Grafik: Entwicklung des Ökostroms 1990 bis 2009 Die Ökostrommenge stieg von ca.18 TWh in 1990 auf rund 91,4 TWh in 2008. Starke Wachstumsimpulse bekam der Ökostrom durch das Stromeinspeisungsgesetz (StrEG), das am 1.1.1991 in Kraft trat und am 1.4.2000 durch das Erneuerbare Energiengesetz (EEG) abgelöst wurde. Die Novellierung des EEG am 1.8.2004 und am 1.1.2009 sorgte für einen weiteren Anstieg der Ökostrom-Erzeugung. Quelle: BMU- Bericht: Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2008, Stand: April 2009. Die Grafik befindet sich auf S.7 des pdf-Dokuments.
|
|||||||||||||||||||||||||||||||||||||
Stromwirtschaft-2007 20.03.09 (58) |
FAZ-Grafik: Stromwirtschaft 2007 Die Grafik informiert über 5 Kerndaten der Stromwirtschaft in Deutschland: 1.Anteil der Stromerzeuger in %: RWE 30, Eon 21, EnBW 12, Vattenfall 12, Sonst 25. 2.Anteil der Primärenergieträger an der Stromerzeugung in % 1997|2007: Kernenergie 31|22; Braunkohle 25|24; Steinkohle 25|22; Erdgas 9|12; Erneuerbare Energien 4|14; Sonstige 6|6. 3.Beschäftige in der Stromwirtschaft: 1997: 171100; 2006: 122.200; 2007: 121.700 4.Umsatz aus Stromverkauf in Mrd.€: 1997: 41,2; 2006: 56,0; 2007: 56,0. 5.Anteil am Stromverbrauch in % 1997|2007: Industrie 47|47, Haushalte 27|26, Gewerbe,Handel,Dienstleistung 21|22, Verkehr 3|3, Landwirtschaft 2|2. Die Grafik befindet sich im Artikel "Stromwirtschaft: In dichtem Nebel" [FAZ 20.3.09]
|
|||||||||||||||||||||||||||||||||||||
Atomkraftwerke 04.03.09 (53) |
FAZ-Grafik: Kernenergie weltweit In der Weltkarte sind jene Länder, die Atomkraftwerke (AKW) betreiben, rötlich eingefärbt. Weltweit sind 439 AKW in Betrieb, 42 in Bau, 81 in Planung, zusammen 561. Die AKW in Betrieb haben zusammen eine Leistung von 393 GW, durch den geplanten Ausbau würde die Gesamtleistung auf 514 GW wachsen. In der Tabelle unter der Weltkarte werden die Staaten mit Anzahl der Kernkraftwerke in Betrieb | in Bau | in Planung einzeln gelistet. Die 8D412F22-772D-40AD-B566-C06590FE2564Picture.jpg" target="_blank">Grafik befindet sich im Artikel "Siemens bauf auf russische Kerntechnik" [FAZ 4.3.09] (Angaben zum 31.12.08, Stand: Feb.2009)
|
|||||||||||||||||||||||||||||||||||||
Energieverbrauch-Haushalt 27.02.09 (61) |
dpa-Globus : Energie im Haushalt Der Energieverbrauch je Haushalt stieg von 19.392 kWh in 1995 auf 20.262 kWh in 2000 und sank dann auf 17.530 kWh in 2007. Der Rückgang seit 2000 um 13,5 % liegt vor allem an den stark gestiegenen Energiepreisen, was das Energiesparen verstärkte (z..B. verbesserte Wärmedämmung; verstärkte Energieeffizienz bei Heizung und Elektrogeräten). Den weitaus größten Anteil am Energieverbrauch der Haushalte hat die Raumwärme (72,7 %), gefolgt von der Warmwasserbereitung (11,9 %). Haushaltsgeräte und Beleuchtung haben einen Anteil von zusammen 15,5 %. Die Top3-Energieträger sind Erdgas (39,6 %), Mineralöl (22,9 %) und Strom (21,0 %). Fernwärme, Kohle und sonstige Energieträger stellen zusammen 11,5 % des Energieverbrauchs. => Daten der Infografik/ Großansicht | Infografik
|
|||||||||||||||||||||||||||||||||||||
Stromsparen-Haushalt 27.02.09 (60) |
dpa-Globus : Sauber gespart: Einsparung von Strom, CO2 und Kosten in privaten Haushalten Nach Angaben des BMU stiegen die Stromkosten eines 3-Personen-Haushalts seit dem Jahr 2000 von 40 € auf heute 60 € pro Monat. Durch konsequentes Energiesparen und verbesserte Energieeffizienz (z.B. Thermostatventile, moderne Geräte der höchsten Effizienzklasse A++ ) kann der Stromverbrauch im Haushalt auf bis zu 1/3 gesenkt werden. Deutschlandweit können so pro Jahr 40 TWh Strom und 4,4 Mrd. € Stromkosten eingespart werden. Dadurch wird außerdem der Treibhausgasausstoß um 24 Millionen Tonnen CO2 entlastet. => Daten der Infografik/ Großansicht | Infografik
|
|||||||||||||||||||||||||||||||||||||
Atomenergie-EU 12.02.09 (54) |
dpa-Globus : Europas Strom aus Atom In die Landkarte Europas ist bei den Ländern mit Atomkraftwerken (AKW) die Anzahl der Kernkraftwerke im Betrieb bzw. in Planung eingetragen zusammen mit dem Anteil der Kernenergie am Gesamtstrom. Insgesamt sind 196 AKW in Betrieb und 14 im Bau. Frankreich liegt mit einem Atomstromanteil von 76,9 % und 59 AKW an der Spitze aller Staaten. Sehr hohe Atomstromanteile haben Litauen (64,4 %), Slowakei (54,3 %), Belgien (54,1 %), Ukraine (48,1 %) und Schweden (46,1 %), wo die Regierung neuerdings den Atomausstieg beenden will. In Deutschland beträgt der Atomstromanteil 25,9 %. Im Zuge des im Jahr 2000 beschlossenen Atomausstiegs sollen die noch 17 AKW schrittweise bis etwa 2021 stillgelegt werden. => Daten der Infografik/ Großansicht | Infografik
|
|||||||||||||||||||||||||||||||||||||
Standby-Verbrauch 12.02.09 (46) |
iwd-Grafik: Standby-Betrieb: Fernseher schlucken am meisten Strom Mit ihrer Ökodesign-Richtlinie 2005/32/EG will die EU Elektrogeräte mit hohem Stromverbrauch im Standby-Betrieb oder im ausgeschalteten Zustand aus den Haushalten verbannen. Schon eine durchschnittliche Leistungsaufnahme von nur 1 Watt (W) verursacht auf das Jahr hochgerechnet einen Stromverbrauch von 1 W x 24 h x 365 = 8760 Wh = 8,76 kWh. Altgeräte weisen jedoch ein Vielfaches von 1 W auf und ein mit einer breiten Palette von Elektrogeräten ausgestatteter Haushalt kommt pro Jahr auf einen Leerlauf-Stromverbrauch von über 450 kWh, was bereits rund 11 % des durchschnittlichen Stromverbrauchs eines 4-Personen-Haushalts (4000 kWh) ausmacht. Ab 2010 schreibt die EU-Ökodesign-Richtlinie folgende Grenzwerte für die Leistungsaufnahme vor: abgeschaltete Geräte: 1 W; Stand-By/ in Betriebsbereitschaft (z.B. mit Uhranzeige): 2 W. Ab 2013 werden diese Grenzwerte halbiert. Allerdings fehlen Grenzwerte für den Betrieb. Der jetzige durchschnittliche Gerätebestand ist weit von diesen Vorgaben entfernt, wie ein Test aus dem Jahr 2005 des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration (IZM) ergab: siehe iwd-Grafik. Die iwd-Grafik befindet sich auf S. 8 der iwd-Ausgabe 07/09 (814 KB)
|
|||||||||||||||||||||||||||||||||||||
Offshore-Windenergie 29.01.09 (55) |
dpa-Globus : Windenergie von hoher See Das Bundesamt für Seeschifffahrt und Hydrographie (BSH) hat 18 Windparks in der Nordsee und 3 in der Ostsee genehmigt. Ökostrom aus Offshore-Windparks könnte in Zukunft einen wichtigen Beitrag zur "Integrierten Energie- und Klimapolitik" (IEKP) der Bundesregierung leisten. Die Energiepotenziale der Windenergie sind enorm, können allerdings nur über gewaltige Investitionen erschlossen werden. Als Pionierprojekt wird der Windpark "alpha ventus" 45 km nördlich von Borkum der erste sein, der seine Praxistauglichkeit in den rauhen Bedingungen der Nordsee beweisen soll. Im unteren Teil der Grafik wird die Netzanbindung der Windparke zum Überlandnetz mittels Umspannwerk und Unterseekabel dargestellt. => Daten der Infografik/ Großansicht | Infografik
|
|||||||||||||||||||||||||||||||||||||
Ökostrom-2007-2020 28.01.09 (43) |
BEE-Grafik: Stromanteil Erneuerbarer Energien in Deutschland bis 2020 Nach Prognosen des Branchenverbandes BEE steigt die Stromproduktion aus Erneuerbaren Energien von 88 TWh (14 %) in 2007 auf 278 TWh (47 %) in 2020. Der Bruttostromverbrauch von 618 TWh in 2007 wird leicht sinken auf 595 TWh in 2020. Die BEE-Grafik befindet sich auf S. 27 der Stromausbau-Prognose: BEE: Stromversorgung 2020. Wege in eine moderne Energiewirtschaft
|
|||||||||||||||||||||||||||||||||||||
Glühlampen-Verbot 22.01.09 (66) |
Globus-dpa: Ausgeglüht: Energieverschwender Glühlampe Laut EU-Beschluss soll die Glühlampe bis September 2016 schrittweise aus dem Verkehr gezogen werden, beginnend ab dem 1.9.09 die matten Glühlampen, Halogenlampen in Mattglasausführung und alle Glühlampen über 75 Watt, da sie nich mehr die neuen Effizienzstandards erfüllen. Auf Dauer sollen nur noch besonders effiziente Halogen- und Energiesparlampen zum Einsatz kommen. Die EU prognostiziert für 2020 Stromeinsparungen von 39 TWh pro Jahr und eine CO2-Reduktion von 15,5 Mio Tonnen CO2. => Großansicht: Hinweise zum Bezug
|
|||||||||||||||||||||||||||||||||||||
Wärmequellen 01.01.09 (47) |
Globus Infografik: Wärmequellen: Damit werden Deutschlands Wohnungen beheizt Infolge des Gasstreits zwischen Russland und der Ukraine im Januar 2009 war die Gaszufuhr aus Russland nach Europa fast 14 Tage eingeschränkt: 18 Länder waren betroffen, darunter einige mit kompletten Gasausfall. Auch Deutschland erhielt nur noch ein Teil des Gases über die nördlich der Ukraine verlaufende Jamal-Pipeline. Vor diesem Hintergrund stellt sich u.a. die Frage, wie verbreitet Gas-Heizungen in Deutschland sind. Der Anteil der Gaz-Heizungen ist stark angestiegen: von weniger als 1/3 zu Anfang der 1990er-Jahre auf 48,3 % in 2007. Damit liegt Gas mit Abstand vor allen anderen Wärmequellen: Erdgas 48,3%; Heizöl 30,3 %; Fernwärme 12,5 %; Strom 5,9 %; Kohle 3,0 %. Großansicht der Grafik: Bezug bei Globus
|
|||||||||||||||||||||||||||||||||||||
Rohstoffe 19.12.08 (28) |
Globus-Infografik: Bergeweise Rohstoffe Die in den letzten Jahren stark gestiegenen Rohstoffpreise und ihr jäher Absturz ab Mitte 2008 in Folge der internationalen Finanz- und Wirtschaftskrise hat wieder einmal ins öffentliche Bewusstsein gerückt, wie wichtig eine ausreichende Rohstoffversorgung bei verkaftbaren Preisen ist. Im Fokus standen bisher eher die fossilen Energien (Erdöl, Erdgas, Kohle) sowie die Stromerzeugung. Daneben verbraucht der Bundesbürger zahlreiche weitere Rohstoffe, insgesamt rund 1000 Tonnen im Verlaufe seines Lebens, z.B. mineralische und metallische Rohstoffe, die auf vielfältige Weise bei der Produktion von Gütern und der Bereitstellung sowie Erhaltung der Infrastruktur genutzt werden. => Daten der Infografik/ Großansicht
|
|||||||||||||||||||||||||||||||||||||
Supergrid 06.11.08 (1) |
ZEIT-Grafik: Das Super-Stromnetz (Super-Grid) Der Strombedarf Europas und der Staaten in Nordafrika und Nahost kann vollständig mit Ökostrom gedeckt werden, wenn diese Länder durch ein großes Stromnetz (super-grid) über leistungsfähige HGÜ miteinander verbunden werden. Solarstrom aus der Sahara und Nahost, Windstrom von der Atlantikküste und Nord-/Ostsee, Wasserkraft aus Skandinavien, Geothermiestrom aus Island und Strom aus Biomasse an diversen Standorten bringen in der Summe genügend Strom für alle Verbraucher und sorgen durch Ausgleich im Großverbund auch für Versorgungssicherheit. In Deutschland würde der Strom einschließlich Transport z.B. aus der Sahara etwa 7 ct/kWh kosten. => Daten der Infografik / Großansicht/ Bezug
|
|||||||||||||||||||||||||||||||||||||
Atomenergie Großansicht / Daten 29.08.08 (11) |
Globus-Infografik: Atomare Welt: Länder, die Atomenergie erzeugen In der Weltkarte oben sind jene Länder orange eingefärbt und nummeriert, die AKWs betreiben. Anhand der Nummer kann in der Tabelle unterhalb der Weltkarte das jeweilige Land identifiziert und die Anzahl seiner AKW im Betrieb bzw. im Bau abgelesen werden. Die Kurve in der Grafik rechts unten zeigt die zeitliche Entwicklung der Gesamtleistung in GW aller AKW weltweit von 0|1960 auf 389,6|2007. Für Phase 2007 - 2030 werden unterschiedliche Szenarien dargestellt: 1. Szeario: starker Anstieg auf 691 GW bis 2030 u.a. durch Neubau von AKW (auch in Ländern, die derzeit keine AKW haben) 2. Szenario: moderater Anstieg auf 447 GW bis 2030 u.a., wenn heute bereits im Bau befindliche AKW ans Netz gehen. => Daten der Infografik / Großansicht/ Bezug
|
|||||||||||||||||||||||||||||||||||||
Kohlekraftwerke-NRW 03.08.08 (50) |
WR-Grafik: Neue Kohlekraftwerke in NRW Kohlekraftwerke sind mit Abstand die klimaschädlichste Art der Stromerzeugung. Dennoch sind in NRW 7 neue Steinkohle- und 2 neue Braunkohlekraftwerke geplant.
=> Großansicht
|
|||||||||||||||||||||||||||||||||||||
Ökomix-2007 Großansicht / Daten 04.07.08 (12) |
Globus-Infografik: Der Öko-Mix 2007 Erneuerbare Energien wie Sonne, Wind und Biomasse sind nicht zuletzt durch die massive Unterstützung und Förderung durch das Erneuerbare Energiegesetz (EEG) rasant gestiegen. Insgesamt wurden in Deutschland im Jahr 2007 rund 222 TWh Energie aus regenerativen Quellen gewonnen, die sich wie folgt auf die Endenergiearten verteilen (in TWh): Strom: 87,5; Wärme: 90,2; Kraftstoffe: 44,4. Die Kreisdiagramme veranschaulichen die Anteile der verschiedenen Primärenergiearten bei Strom, Wärme und Kraftstoffe. => Daten der Infografik / Großansicht
|
|||||||||||||||||||||||||||||||||||||
PKW-Antriebe-THG-Bilanz 03.07.08 (85) |
ZEIT-Infografik: Treibhausgas-Bilanz verschiedener PKW-Antriebe Das Elektroauto gilt als neuer Hoffnungsträger in Politik und Wirtschaft: es soll angeblich weitaus klimafreundlicher sein als ein herkömmlicher Otto- oder Diesel-PKW und auch pro gefahrenen Kilometer weniger Kosten verursachen. Die Grafik belegt jedoch, dass das Elektroauto nur dann deutlich weniger Treibhausgase verursacht, wenn seine Batterien mit Ökostrom aufgeladen werden. Geringere Kosten für den Nutzer eines Elektroautos können künftig allenfalls dann realisiert werden, wenn der zurzeit noch extrem hohe Preis einer Batterie deutlich gesenkt und zusätzlich ihre Reichweite durch technischen Fortschritt von derzeit ca. 100 - 200 km mindestens verdoppelt werden kann. => Daten und Großansicht der Infografik
|
|||||||||||||||||||||||||||||||||||||
Windkraft Großansicht/ Daten 20.06.08 (24) |
Globus-Infografik: Vom Winde bewegt Die installierte Windkraftleistung in Deutschland stieg von 55 MW in 1990 an auf 22247 MW in 2007. Für 2012 sind 31944 MW geplant, darunter 3800 MW Off-Shore-Anlagen. Zuletzt hat sich der Ausbau in Folge technischer Probleme und auch wegen der internationalen Finanzkrise, wodurch die Finanzierung schwieriger wird, verzögert. Von daher ist fraglich, ob die für 2017 prognostizierte Kapazität von 44118 MW, darunter 11500 MW Offshore, realisiert werden kann. Optimistischen Schätzungen zufolge könnte im Jahr 2030 etwa 1/3 des Stroms in Deutschland durch Windkraft erzeugt werden. Noch größere Potenziale bieten Länder wie USA, China und Indien oder besonders windreiche Regionen z.B. am Atlantik etwa in Staaten wie Marokko. Deutsche Hersteller und Zulieferer - darunter die Marktführer Enercon, Repower und Nordex - mit mehr als 80000 Beschäftigten exportieren rund 80 % ihrer Produktion und haben einen Weltmarktanteil von rund 33 %. => Daten der Infografik/ Großansicht
|
|||||||||||||||||||||||||||||||||||||
Kohlekraftwerke Großansicht/ Daten 02.05.08 (21) |
Globus-Infografik: Deutschland setzt auf Kohlekraft Steinkohle- (949 g CO2/kWh) und Braunkohle-Kraftwerke (1153 g CO2/kWh) haben unter allen gängigen Stromerzeugungsarten mit Abstand die schlechteste Treibhausgasbilanz. Obwohl die Bundesregierung mit ihrem "Integrierten Energie- und Klimaprogramm" (IEKP) die CO2-Emissionen bis 2020 um 40 % im Vergleich zum Jahr 1990 senken will, werden aktuell in Deutschland 20 Kohlekraftwerke geplant, darunter 4 besonders klimaschädliche Braunkohlekraftwerke. Bei 6 weiteren ist die Planung noch offen (3) bzw. zurückgestellt (3). Manche Standorte sind hoch umstritten, z.B. war Hamburg-Moorburg einer der Hauptstreitpunkte in den Koalitionsverhandlungen von Schwarz-Grün. Am 30.9.08 wurde das Großkraftwerk (1640 MW) unter Auflagen genehmigt, gegen die der Betreiber Vattenfall jedoch juristisch vorgehen will. => Daten der Infografik/ Großansicht
|
|||||||||||||||||||||||||||||||||||||
Strommix-2007 Großansicht/ Daten 25.04.08 (22) |
Globus-Infografik: Deutschlands Strom-Mix Der Anteil erneuerbarer Energien an der Stromerzeugung ist 2007 auf 14,2 % gestiegen, d.h. mit 85,8 % ist der Anteil konventioneller Energieträger (Kohle, Erdöl, Erdgas, Uran) immer noch sehr hoch. Damit bleibt die Stromerzeugung der Energiesektor mit dem weitaus höchsten Treibhausgas-Ausstoß. Soll der im Jahr 2000 vereinbarte Atomausstieg wie geplant bis zum Jahr 2021 abgeschlossen werden, muss die Energiewende viel zügiger als bisher umgesetzt werden, insbesondere muss der Verbrauch an Strom durch drastisch erhöhte Energieeffizienz und verstärktes Stromsparen deutlich gesenkt werden. Bei den im Übergang zur Energiewende noch notwendigen Kohle- und Gas-Kraftwerken muss der Wirkungsgrad erhöht werden, vor allem durch Ausbau der Kraft-Wärme-Kopplung (KWK). => Daten der Infografik/ Großansicht
|
|||||||||||||||||||||||||||||||||||||
Solarthermiekraftwerk 08.04.08 (89) |
FAZ-Grafik: Solarrinnenkraftwerk Die Infografik erklärt die Funktionsweise eines Solarrinnenkraftwerks. Der Querschnitt einer Solarrinne ist eine Parabel, daher auch die Bezeichnung "Parabolrinnen"-Kraftwerk. Eine Parabel hat einen Brennpunkt, in den die eintreffenden Sonnenstrahlen gebündelt werden, folglich focusiert eine Parabolrinne die Sonnenstrahlen in einer Brennlinie in Form einer Geraden. Dort verläuft ein Absorberrohr, in dem ein Spezialöl durch die gebündelten Sonnenstrahlen auf etwa 400 °C erhitzt wird. Durch Zusammenschalten vieler Solarrinnen (Solarfeld) wird die Energieausbeute soweit gesteigert, dass sie dann mit der üblichen Technik eines Wärmekraftwerks (Wärmetauscher, Dampferzeuger, Turbine, Generator) in elektrischen Strom umgewandelt werden kann. Ein Teil der Wärmeenergie wird in einem Salzschmelze-Wärmespeicher gepuffert, um Zeiten geringer Sonneneinstrahlung auszugleichen. Durch diese Energiezwischenspeicherung sind Parabolrinnenkraftwerke in der Lage, ein weitestgehend gleichbleibendes Stromangebot rund um die Uhr bereitzustellen. Werden sie außerdem dort installiert, wo die Sonneneinstrahlung über das Jahr hoch ist (z.B. in Wüsten), können Parabolrinnenkraftwerke herkömmliche fossile oder atomare Kraftwerke ersetzen (Grundlast-Fähigkeit). Die 139C7C1E-F109-4B06-BC3D-4AF8D955BED8Picture.jpg" target="_blank">Grafik ist eingebettet im Artikel: Dampfstrom aus dem sonnigen Spanien [FAZ 8.4.08]
|
|||||||||||||||||||||||||||||||||||||
Atomausstieg 20.07.07 (80) |
dpa-Globus : Atomkraft: Wie lange noch? In die Deutschlandkarte sind die Standorte von derzeit noch 17 in Betrieb befindlichen Kernkraftwerken markiert, eingefärbt je nach Betreiber: Rot E.on, Hellblau RWE; Gelb Vattenfall; Dunkelblau EnBW, Grau Stadtwerke. Für jedes Atomkraftwerk wird das Jahr der Inbetriebnahme und das voraussichtliche Ende der Restlaufzeit notiert. Biblis A 1976/2008; Biblis-B 1976/2009; Brokdorf 1986/2019; Brunsbüttel 1976/2009; Emsland 1988/2020; Grafenrheinfeld 1981/2014; Grohnde 1984/2017; Grundremmingen B 1984/2015; Grundremmingen C 1984/2016; Isar-1 1977/2011; Isar-2 1988/2020; Krümmel 1983/2016; Neckarwestheim-1 1976/2009; Neckarwestheim-2 1989/2022; Philippsburg-1 1979/2012; Philippsburg-2 1984/2018; Unterweser 1978/2012. Daten aus: Globus 1500; Stand: Mitte 2007; Quelle: BMU => Hinweis zur Großansicht
|
|||||||||||||||||||||||||||||||||||||
Stromkosten-Vergleich 08.03.07 (45) |
RECCS-Grafik: Stromgestehungskosten erneuerbarer Energien im Vergleich mit Gas- und Kohlekraftwerken ohne und mit CCS 2000 bis 2050 Frühestens ab dem Jahr 2020 werden CCS-Technologien für den breiten Einsatz in Kohlkraftwerken verfügbar sein. Bis dahin werden einige Ökostromarten, z.B. Off-Shore-Windstrom, preiswerter sein als CCS-Strom, für den Ökostrommix wird das ab ca. 2030 der Fall sein. Da Ökostrom und Energieeffizienz deutlich schneller zum Klimaschutz beitragen können als CCS, empfiehlt die RECCS-Studie eine Energiepolitik nach dem Szenario "NaturschutzPlus" (NATP), bei dem die Energieeffizienz und die Erneuerbaren Energien stark ausgebaut werden und die Klimaschutzziele auch ohne CCS erreicht werden können. Die Grafik befindet befindet sich auf S. 34 der RECCS-Studie
|
|||||||||||||||||||||||||||||||||||||
Windenergie-2006-D 02.02.07 (68) |
dpa-Globus : Windkraft in Deutschland Die installierte Nennleistung der Windkraft stieg bis Ende 2006 auf 20.622 MW, 12 % mehr als im Vorjahr. Mit insgesamt 30,6 TWh Strom deckt der Windstrom bereits 7 % des bundesweiten Nettostromverbrauchs. Ein weiterer deutlicher Ausbau der Windstromkapazitäten ist wahrscheinlich. Neue Dimensionen an Windstrom versprechen die geplanten Offshore-Windparks. => Daten der Infografik/ Großansicht | Infografik
|
|||||||||||||||||||||||||||||||||||||
Windkraftanlage 06.01.06 (94) |
dpa-Globus : So funktioniert ein Windrad Die Infografik zeigt den Aufbau und die Kenndaten der aktuell größten Windkraftanlage (WKA), der Repower 5M mit einer Nennleistung von 5 MW und einem Rotor-Durchmesser 126 m. Die drei Rotorblätter treiben über ein Getriebe den Generator an. Der erzeugte Strom wird auf 10 bis 30 Kilovolt hochtransformiert und dann ins allgemeine Stromnetz eingespeist. Die Energieausbeute wächst mit der 3.Potenz der Windgeschwindigkeit, deshalb lohnen sich Windkraftanlagen besonders an der Nord- und Ostseeküste mit mittleren Windgeschwindigkeit von über 5 m/s (Meter/ Sekunde) oder auch im küstennahen Hinterland oder den Mittelgebirgen mit Windgeschwindigkeiten zwischen 4 bis 5 m/s. Daten/ Bezug der Großansicht zur Infografik | Infografik
|
|||||||||||||||||||||||||||||||||||||
Energiewende-Szenario 21.03.03 (62) |
WBGU-Hauptgutachten 2003: Energiewende zur Nachhaltigkeit Der Wissenschaftlicher Beirat Globale Umweltveränderungen (WBGU) entwickelt in seinem Jahresgutachten 2003 Szenarien für eine nachhaltige Energieversorgung. Aus "Leitplanken einer nachhaltigen Energiepolitik" leitet der WBGU ein Szenario für die Entwicklung des globalen Energiemixes bis 2050/ 2100 ab, das die Grafiken anschaulich darstellen. Das Szenario basiert auf folgenden Prinzipien: deutliche Reduktion fossiler Energien; Ausstieg aus der Atomenergie; starker Ausbau und Förderung Erneuerbarer Energien, insbesondere des Solarstroms (gelb), der im Jahr 2100 etwa 2/3 der gesamten Primärenergie bereitstellen soll. Zusammenfassung / Download-Angebote Überblick, Presseerklärung, Download, Expertisen, Bezug als Buch
|
|||||||||||||||||||||||||||||||||||||
erstellt: 25.01.25/ zgh | Strom, Stromerzeugung, Stromverbrauch | 0 |
|
||||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
Kontakt | über uns | Impressum | Haftungsausschluss | Copyright © 1999 - 2025 Agenda 21 Treffpunkt |